Draft Huntly Managed Fill Acid Sulphate Soil Management Plan

Prepared for:

Gleeson Managed Fill Limited

Prepared by:

June 2022

Document Control

PROJECT DETAILS

Project No.	J000093
Report Revision No.	1
Date of Issue	3 June 2022
Project Manager	Andrew Rumsby
Project Director	Simon Hunt

REPORT DETAILS

Title	Draft Huntly Managed Fill Acid Sulphate Soils Management Plan		
Main Author(s)	Andrew Rumsby		
Approved By	David Dangerfield		
Client	Gleeson Managed Fill Limited		
Client Contact	Kate Madsen		

DISTRIBUTION LIST

Date	No. of Copies Company/Organisation		Name	Issue Type

Note: (e) electronic file (h) hardcopy

This document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Any third party that receives a copy of this document does so subject to the limitations referred to herein.

Reproduction of this document is prohibited without the express, written approval of EHS Support New Zealand Ltd.

Table of Contents

1	Introdu	uction1
	1.1	Objectives
	1.2	What are Acid Sulphate Soils?
	1.3	Potentially Acid Sulphate Soils1
	1.4	Prohibited Acid Sulphate Soils
2	Backgr	ound Information4
	2.1	Treatment of Acid Sulphate Soils4
	2.2	Treatment Pad4
	2.3	Treatment of stormwater
3	Assess	ment Criteria6
4	Soil Ne	eutralisation
	4.1 4.2 4.3	Selection of Neutralisation materials
5	Limitat	tions9
	5.1	Hydro Geological and Geotechnical Report Error! Bookmark not defined.
6	Refere	nces

List of Tables

Table 3-1	Acid Sulphate Soils Classification Criteria
Table 4-1	ENV Calculations

List of Figures

Figure 1-1Preliminary Map of the Potential for Acid Sulphate Soils in the Auckland Region
(Roberts, 2017)Figure 2-1Cross-Section of a Typical Treatment Pad

List of Appendices

Appendix A Field PHox

Appendix B ASS Treatment System Design and Layout

Draft Acid Sulphate Soil Management Plan – Huntly Managed Fill Acronyms

Acronyms

ANC	Acid Neutralising Capacity			
ASS	Acid Sulphate Soils			
CRS	Chromium Reducible Sulphate			
DAWR	Department of Agriculture and Water Resources			
ENV	effective neutralisation value			
FMP	Fill Management Plan			
GMF	Gleeson Managed Fill Limited			
MBO	monosulfide black ooze			
NAPP	Net Acid Producing Potential			
NV	neutralising value			
рНох	pH oxidation			
RIS	Reactive Iron Species			
SCR	Chromium reducible Sulphur			
ТАА	Titratable Actual Acidity			
WAC	Waste Acceptance Criteria			
WRC	Waikato Regional Council			

Trademarks, trade names, company, or product names referenced herein are used for identification purposes only and are the property of their respective owners.

Units of Measure

hahectarem²square metresDensitykg/m³kilograms per cubic metrekg/m³kilograms per cubic metreµS/cmmicrosiemen per centimetredS/mdecisiemen per centimetremVmillisolteren per centimetremVmillivoltLengthcentimetreskilometresmillimmicrogramsmmicrogramsggramskilogramsgiligramskilogramsmilligramstmetric tonnesLongthmiligram per kilogrammg/kgmicrogram per kilogrammg/kgmicrogram per kilogrammg/kgsocialsfexelskilopascalsper setkilopascalsper setkilopascalsper setremperaturesocialsrempera	Area			
Density kg/m³ kilograms per cubic metre Electrical Conductance µS/cm microsiemen per centimetre dS/m decisiemen per netre mS/cm millisiemen per centimetre mV millioutres centimetres metres mm tilligrams kilograms milligram g microgram per kilogram mg/kg miligram per kilogram mg/kg pascals Paesals Paescals Paesals kiloyaces Fahrenheit Ki kelvin velocity kelvin m/s metres per second	ha	hectare		
Densitykg/m³kilograms per cubic metrekg/m3microsiemen per centimetreμS/cmmicrosiemen per centimetredS/mdecisiemen per metremNmillisiemen per centimetremVmillisiemen per centimetremVmillisoltLengthcentimetresµmmicrometreskmkilometresmmmetresmmmillignamsggramskgkilogramsggramskgmilligramstmetric tonnesConcentrion by Massµg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgmilligram per kilogrammg/kgkilopascalsPaAscalsfdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitymetres per secondµLmicrolitres	m ²	square metres		
kg/m³kilograms per cubic metreElectricalonductanceμS/cmmicrosiemen per centimetredS/mdecisiemen per metremS/cmmillisiemen per centimetremVmillisiemen per centimetremVmillivoltLengthµmmicrometrescmcentimetreskmkilometresmmmillimetresmmmillimetresMassmicrogramsggramskgkilogramskgmicrogramskgmicrogram per kilogrammg/kgmicrogram per kilogrammg/kgmiligram per kilogrammg/kgsilogracalspgsilogracalsfyascalsfdegrees Celsius°Cdegrees FahrenheitKkelvinvelocitymicrogram ger kilogramm/kgmicrogram per kilogrammg/kgmicrogram per kilogrammg/kgmicrogram per kilogrammg/kgmicrogram per kilogrammg/kgkilopascalsPakilopascalsfdegrees Celsius°Ckelvinmusekelvinkilomkelvinkilomkelvinkilomjascals%jascals%jascals%jascals%jascals%jascals%jascals%jascals%jascals%jasc	Density			
Electrical Conductance μS/cm microsiemen per centimetre dS/m decisiemen per metre mS/cm millisiemen per centimetre mV millisolt Length micrometres µm micrometres cm centimetres km kilometres mm metres mm millimetres Mass g g grams kg kilograms kg kilograms mg milligrams t metric tonnes Concentrum by Mass µg/kg microgram per kilogram mg/kg milligram per kilogram mg/kg microgram per kilogram mg/kg microgram per kilogram mg/kg degrees Celsius Pa degrees Celsius °C degrees Celsius °F degrees Fahrenheit K kelvin Velocity microlitres m/s metres per second		kilograms per cubic metre		
dS/mdecisiemen per metremS/cmmillisiemen per centimetremVmillivoltLengthμmmicrometrescmcentimetreskmkilometreskmkilometresmmmetresmmmillimetresMassgaramsggramskgkilogramsgmitric tonnestmetric tonnesLmilligram per kilogrammg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgsilopascalsPascalsPascalsFenperatureelegrees Celsius°Fdegrees FahrenheitKkelvinVelocitymetres per secondm/smetres per secondµLmicrolitres	-			
dS/mdecisiemen per metremS/cmmillisiemen per centimetremVmillivoltLengthμmmicrometrescmcentimetreskmkilometresmmmetresmmmillimetresmmmillimetresggramskgkilogramsggramskgmilligramstmetric tonnestmilligram per kilogrammg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgsilopascalsPeressureedegrees Celsius°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitymicrogramsm/smetres per secondHuLmicrolitres	μS/cm	microsiemen per centimetre		
mVmillivoltLengthμmmicrometresμmcentimetreskmkilometresmmetresmmmillimetresMassμgmicrogramsggramskgkilogramsgmetric tonnesConcentration by Massμg/kgmicrogram per kilogrammg/kgmiligram per kilogrammg/kgmiligram per kilogramPressureklopascalsPaPascalsConcentration by MassKPakilopascalsmg/kgmitrogram per kilogrammsdegrees Celsius°Cdegrees FahrenheitKkelvinVelocitymitres per secondVolumemitroglitresμLmicrolitres		decisiemen per metre		
Lengthμmmicrometrescmcentimetreskmkilometreskmmetresmmmillimetresmmmillimetresμgmicrogramsggramskgkilogramskgmilligramstmetric tonnesConcentrito by Massμg/kgmicrogram per kilogramμg/kgmilligram per kilogramμg/kgmilligram per kilogrampssurevilopascalsPaPascalsFensperativedegrees Celsius°Cdegrees FahrenheitKkelvinVelocitymetres per secondµLmicrolitres	mS/cm	millisiemen per centimetre		
μmmicrometrescmcentimetreskmkilometresmmetresmmmillimetresMassμgmicrogramsggramskgkilogramskgkilogramsmgmilligramstmetric tonnesConcentruit by Massµg/kgmicrogram per kilogramµg/kgmilligram per kilogramµg/kgmilligram per kilogramPressureVkPakilopascalsPaPascalsConcent vit by MassMicrogram per kilogramµg/kgmilligram per kilogramµg/kgkilopascalsPaPascalsKPakilopascalsPaQegrees Celsius°Cdegrees FahrenheitKkelvinVelocitymicrogram per secondµf/kgmicrogram per secondµf/kgmicrogram per second	mV	millivolt		
i centimetres cm centimetres km kilometres m metres mm millimetres Mass micrograms g grams g grams kg kilograms mg milligrams t metric tonnes Concentrum by Mass µg/kg microgram per kilogram mg/kg milligram per kilogram mg/kg milligram per kilogram Pressure Velocity °C degrees Celsius °F degrees Fahrenheit K kelvin Velocity m/s metres per second Velocity m/s metres per second	Length			
kmkilometresmmmetresmmamillimetresμgmicrogramsμggramskgkilogramskgkilogramsmgmilligramstmetric tonnesConcentron by Massμg/kgmicrogram per kilogramμg/kgmilligram per kilogramμg/kgmilligram per kilogramμg/kgsilopascalsPressurekilopascalskPakilopascalsPadegrees Celsius°Cdegrees FahrenheitKkelvinVelocitymicro per secondm/smetres per secondµLmicrolitres	μm	micrometres		
mmetresmmmillimetresMassμgmicrogramsμggramsggramskgkilogramsmgmilligramstmetric tonnesConcentration by Massµg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgmilligram per kilogramPressurePakPakilopascalsParemperatureedegrees Celsius°Cdegrees FahrenheitKkelvinVelocitymetres per secondvolumeµLmicrolitres	cm	centimetres		
mmmillimetresMassμgmicrogramsμggramsggramskgkilogramsmgmilligramstmetric tonnesConcentr-To by Massμg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgmilligram per kilogramPressureVklopascalsPaPaPascalsTemperatureV°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitymetres per secondVolumemicrolitres	km	kilometres		
Massμgmicrogramsggramskgkilogramsmgmilligramstmetric tonnesConcentroby Massμg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgmilligram per kilogramPressurePakPakilopascalsTemperatorVelocity°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitymetres per secondµLmicrolitres	m	metres		
μgmicrogramsggramskgkilogramsmgmilligramstmetric tonnesConcentration by Massμg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgmilligram per kilogramPressurekilopascalsPaPascalsTemperativedegrees Celsius°Cdegrees FahrenheitKkelvinVelocitymetres per secondVolumemicrolitres	mm	millimetres		
ggramskggramskgkilogramsmgmilligramstmetric tonnesConcentration by Massµg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgmilligram per kilogramPressurekPakilopascalsPaPascalsTemperature°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitym/smetres per secondVolumeµLµLmicrolitres	Mass			
kgkilogramsmgmilligramstmetric tonnesConcentroby Massμg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgmilligram per kilogramPressurekilopascalsPaPascalsTemperatoregrees Celsius°Fdegrees FahrenheitKkelvinVelocitym/smetres per secondVolumeμLμmicrolitres	μg	micrograms		
mgmilligramstmetric tonnesConcentration by Massμg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgmilligram per kilogramPressuremilligram per kilogramkPakilopascalsPaPascalsTemperature°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitymetres per secondVolumeμμLmicrolitres	g	grams		
tmetric tonnesConcentration by Massμg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgmilligram per kilogramPressurekilopascalskPaPascalsTemperaturedegrees Celsius°Cdegrees FahrenheitKkelvinVelocitymetres per secondVolumemicrolitres	kg	kilograms		
Concentration by Massμg/kgmicrogram per kilogrammg/kgmilligram per kilogrammg/kgmilligram per kilogramPressurekPakilopascalsPaPascalsTemperaturedegrees Celsius°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitym/smetres per secondVolumeμLμmicrolitres	mg	milligrams		
μg/kgmicrogram per kilogrammg/kgmilligram per kilogramPressurePressurekPakilopascalsPaPascalsTemperatdegrees Celsius°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitymetres per secondVolumeμμLmicrolitres	t	metric tonnes		
mg/kgmilligram per kilogramPressurekPakilopascalsPaPascalsTemperature°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitym/smetres per secondVolumeμLmicrolitres	Concentra	tion by Mass		
PressurekPakilopascalsPaPascalsTemperature°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitym/smetres per secondVolumeμLmicrolitres	µg/kg	microgram per kilogram		
kPakilopascalsPaPascalsTemperature°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitym/smetres per secondVolumeμLmicrolitres	mg/kg	milligram per kilogram		
PaPascalsTemperature°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitym/smetres per secondVolumeμLmicrolitres	Pressure			
Temperature°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitym/smetres per secondVolumeµLmicrolitres	kPa	kilopascals		
°Cdegrees Celsius°Fdegrees FahrenheitKkelvinVelocitym/smetres per secondVolumeμLmicrolitres	Pa	Pascals		
°F degrees Fahrenheit K kelvin Velocity m/s metres per second Volume μL microlitres	Temperat	ure		
K kelvin Velocity m/s m/s metres per second Volume microlitres	°C	degrees Celsius		
Velocity m/s metres per second Volume μL microlitres	°F	degrees Fahrenheit		
m/s metres per second Volume μL microlitres	K	kelvin		
Volume μL microlitres	Velocity			
μL microlitres	m/s	metres per second		
•	Volume			
cL centilitres	μL	microlitres		
	cL	centilitres		

cm ³	cubic centimetre		
GL	gigalitre		
L	litres		
m ³	cubic metre		
mL	millilitres		
ML	megalitre		
Concentration by Volume			
µg/L	microgram per litre		
mg/L	milligram per litre		
ppmv	parts per million by volume		
ppbv	parts per billion by volume		

1 Introduction

EHS Support New Zealand Ltd ("EHS Support") has been engaged by Paua Planning Limited (PP) on behalf of Gleeson Managed Fill Limited (GMF) to develop a management plan for managing receiving acid sulphate soils (ASS) submitted to the Huntly Managed Fill for disposal.

This ASS management plan is intended to supplement the Fill Management Plan (FMP).

1.1 Objectives

The objectives of the ASS management plan include:

- 1. Identification and classification of ASS that the Huntly Managed Fill may receive.
- 2. Outlining the process of neutralising ASS
- 3. Validation of neutralised soils before disposal.

1.2 What are Acid Sulphate Soils?

ASS is a term given to soils and sediments rich in naturally occurring iron sulphide minerals. Acid sulphate soils naturally occur in several locations within the Waikato, including the Coromandel region; primarily within geothermal areas, peat soils, some volcanic soils and certain areas in the North Waikato region. When these soils are disturbed and exposed to air, they may be oxidised. If there is an insufficient natural buffering capacity within the soils, they may generate acidic leachate water, mobilising inorganic elements.

In the Auckland and Northland area, many soils tested from the Putekoka formation and Holocene age alluvial soils have moderately to a highly acidic character.

1.3 Potentially Acid Sulphate Soils

For the purpose of this ASS management plan, the following soils/sediments are assumed to have acid-generating potential:

- All soils derived from dredging operations and flood mitigation works.
- Marine or estuarine sediments.
- All soils identified as being monosulfide black ooze (MBO).
- All peat soils.
- Soils identified as being acidic soils under the New Zealand Soil Classification Scheme, such as fluid Gley Raw Soils and Hydrothermal Raw Soils.
- Soils identified from geological maps as being areas identified in geological areas bearing sulphide minerals, or former marine shales/sediments.
- Soils identified in geological maps as being areas identified as being Pukekoka formation.
- Soils from geothermal features or have been altered by geothermal activity.
- Coastal and near-coastal soils (especially salt marshes, mangrove swamps, outer barrier tidal lakes and black swamps).
- All marine sediments.
- Soils identified as having a medium or high probability of ASS identified in **Figure 1-1**.
- Soils identified in any ASS hazard maps published by the Waikato Regional Council (WRC).

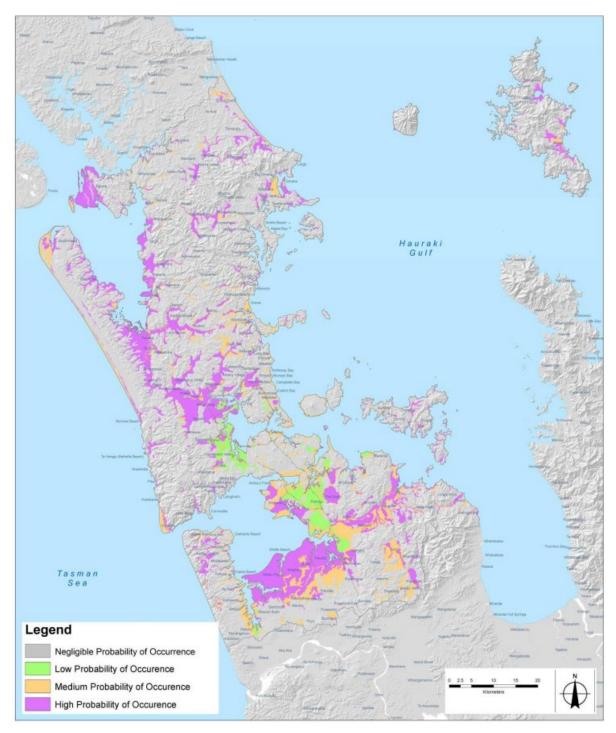


Figure 1-1 Preliminary Map of the Potential for Acid Sulphate Soils in the Auckland Region (Roberts, 2017)

Draft Acid Sulphate Soil Management Plan – Huntly Managed Fill Introduction

1.4 Prohibited Acid Sulphate Soils

The soils or soil-like materials shall not be accepted from the following sources:

- Coal ash (including fly ash or bottom ash).
- Bulk Fertiliser.
- Acid-generating tailings from the processing of sulphide ore.
- Other sulphuric mine tailings materials.
- Waste from metalliferous minerals' physical and chemical processing (including mine mullock, iron slag and conveyor sludge).

2 Background Information

GMF operates a managed fill operation at 310 Riverview Road, Huntly. The intention of the managed fill is to accept cleanfill and soils containing elevated concentrations of contaminants (as defined in the FMP Waste Acceptance Criteria). Some soils (or sediments) may contain sulphide minerals, which, when disturbed by the excavation process, may form ASS. This document describes the process for identifying potential ASS and how they will be managed on-site to neutralise the acid-generating capabilities of the soils.

2.1 Treatment of Acid Sulphate Soils

Potential ASS/ASS will be identified by the client and tested for Chromium-reducible sulphate to allow GMF to identify the amount of AgLime required to neutralise the soils. Once GMF has assessed AgLime required and verified that there is a sufficient amount of AgLime and space available on the treatment pads available, then the fill material will be accepted on-site (in writing?).

The Gleeson Cox facility is designed to treat up to 1,000 m³ per day, on a continuous basis to ensure that material is not stockpiled within the process pad when the site is not attended or, to the extent practicable, during rainfall. The general design and layout of the ASS treatment system is presented in **Appendix A**.

Once the material is accepted on-site, it will be placed onto the treatment pad which provides space for two active processing piles (see **Section 2.2** for details of the treatment pad design). Aglime will be mixed into the soil using a rotary cultivator or similar. Once the Aglime has been added, then pHox testing will be undertaken (see **Section 4.3** and **Appendix B**) to confirm that sufficient AgLime has been added to the soil. When pHox is at the required level, the material will be loaded on site trucks and carried to the active managed fill site. This process will operate continuously, such that the site is cleared at the end of each working day. To ensure that this can be achieved, loads will not be accepted after 3:30p.m. on any working day and, to the extent practicable, will not be received if rain is forecast.

If the pHox test is inclusive or indicates insufficient AgLime has been added, soil samples will be collected and sent to a certified laboratory for chromium-reducible sulphide testing¹. The material will be covered in one stockpile for quartine until cleared for export to the managed fill.

2.2 Treatment Pad

A treatment pad should be prepared according to **Figure 2-1**, as per the Queensland Acid Sulfate Soil Technical Manual (Dear et al. 2002). An impermeable layer and leachate collection system are required. The treatment pad will be located at least 40 m from any waterway and placed in a topographically high area to avoid inundation following heavy rain (see **Appendix A** for the location of treatment pads). To achive this, the pad is to be located within the vicinity of the completed overburden disposal site to the south-west of the quarry pit.

¹ It should be noted that CRS testing must be undertaken in Australia as there are no commercial labraotries offering this service. Analysis could take up to 2-3 weeks before results are obtained.

Draft Acid Sulphate Soil Management Plan – Huntly Managed Fill Background Information

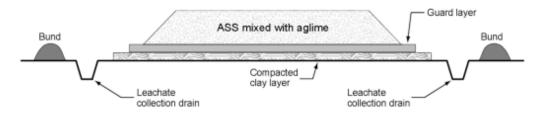


Figure 2-1 Cross-Section of a Typical Treatment Pad

Figure 2-1 shows a cross-section of typical treatment pad. Soils for treatment should be spread in thin (<200 mm) layers on the impervious pad, the required lime spread and then incorporated by rotary hoe/road stabiliser/discing machine or similar.

The treatment pad will be bunded with a minimum 1 m high perimeter bund of compacted clay capped with compacted crushed limestone to contain potential leachate runoff within the treatment pad area and prevent surface water runoff from entering the treatment pad area.

The treatment area will be covered with heavy-duty plastic when it is being used to treat or quarantine soil to prevent runoff, particularly when inclement weather is forecast.

Design information for the treatment pad is attached in **Appendix B**. The treatment pad allows up to 1,000 m³ of ASS to be treated.

AgLime will be stored in a silo located adjacent to the treatment pad. The silo will ensure that the AgLime is not wetted prior to use. The silo will be re-filled on an as-required basis. It will sit within a bund. Re-filling will be direct from trucks to minimise spillage. The bunding will ensure that any unintended spillage is contained and can be removed before any discharge occurs. Such material will be used in the treatment pad operation.

2.3 Treatment of stormwater

All stormwater from the treatment pad will be collected via the perimter drains and directed into a stormwater holding pond sized to accommodate runoff from the 50 year ARI rainfall event. Acidity and pH of the water will be tested, and if the pH of the stormwater is between 6 to 9, then the water will be pumped to the quarry pit or taken by tanker for use in dust suppression. Otherwise, the pH of the stormwater will be adjusted using caustic soda (NaOH) and re-tested to ensure that the pH is within an acceptable range for disposal.

3 Assessment Criteria

The client shall sample all potential ASS using either chromium reducible sulphur (SCR)² suite of analysis or Net Acid Producing Potential (NAPP) tests and present the results to Gleeson Managed Fill Limited before any soils can be accepted into the managed fill.

Table 3-1 details the texture-based action criteria for the management of ASS disturbance, as sourced from the National Acid Sulfate Soils Guidance: National Acid Sulfate Soils Sampling and Identification Methods Manual (NASSG), Department of Agricuture and Water Resources (DAWR), Canberra, 2018 (Water Quality Australia, 2018). The suspension peroxide oxidation combined acidity and sulphur (chromium reducible sulphur (SCR)¹ suite of analysis or Net Acid Producing Potential (NAPP) is used to assess soil for the presence of ASS.

The net acidity result for each sample is compared against the criteria within **Table 3-1**. The components that make up the net acidity using acid-base accounting techniques (i.e. actual, potential or residual acidity) are also assessed against the criteria. Where soils containing concentrations at or above the action criteria are disturbed, an ASS management plan is needed. There is a potential for the soil to generate acid, and specific management may be required.

Type of Material	The volume of soil from a site < 1,000 tonnes		The volume of soil from a site > 1,000 tonnes	
	% S-equiv	Mol. H⁺/tonne	% S-equiv	Mol. H ⁺ /tonne
Coarse texture Sand to loamy sands	0.03	18	0.03	18
Medium Texture Clayey sand to light clays	0.06	36	0.03	18
Fine Texture Medium to heavy Clays	0.1	62	0.03	18

Table 3-1	Acid Sulphate Soils Classification Criteria
-----------	---

² Note historically SPOCAS assessment criteria has been used for assessing the amount of neutralisation required,. However, this test is now considered unreliable and only Chromium Reducible Sulphate test or Net Acid Producing Potential (NAPP) tests should be used for assessing neutralisation requirements.

Draft Acid Sulphate Soil Management Plan – Huntly Managed Fill Soil Neutralisation

4 Soil Neutralisation

Neutralisation of ASS will be accomplished by adding a sufficient amount of AgLime to buffer the acid-generating capacity of the soils.

4.1 Selection of Neutralisation materials

Neutralising agents such as fine AgLime (calcium carbonate), which passes a 2 mm sieve, will be used. Before using the AgLime, the particle size distribution of the lime will be determined to determine the effectiveness of the lime for neutralising soil acidity. The particle size proportion will be determined for the following size fractions:

- - 2.00 mm
- 0.85 1.00 mm
- 0.3-0.850 mm
- <0.3 mm.

4.2 Calculating the quantity of AgLime for the treatment of ASS

It is important to provide adequate neutralising material to reduce the potential for environmental harm or damage. Sufficient neutralising material should be applied to soil, in accordance with the Treatment and management of soil and water in ASS landscapes guidelines (Department of Water and Environmental Regulation, 2015) to counteract the theoretical acid production potential of the soil. The theoretical acid production potential of the soil is determined based on the existing plus the potential acidity of the soil, multiplied by a 'safety factor' of 1.5.

Once the net acidity has been determined, the amount of lime needed for soil treatment can be calculated using the following equation:

Lime needed (kg CaCO₃/m³ soil) = bulk density soil (tonne/m³) x net acidity (S% x 30.59) x 1.028 x 1.5 (safety factor) x 100/ENV

The effective neutralisation value (ENV) is a factor that takes into account:

- Neutralising value (NV)—i.e. the amount of calcium carbonate (fine Aglime), expressed as a
 percentage. For Aglime, the neutralising value is assumed to be 0.85 (see (Department of
 Water and Environmental Regulation, 2015)
- Particle size distribution (percentage by weight)—i.e. the fineness of the neutralising material. The finer the product, the greater the surface area for the neutralising chemical reactions to occur; and
- Solubility of the neutralising material.

The ENV is calculated as shown in Table 4-1.

Neurtailisation Value (Ag Lime)	Particle Size	Proportion	Utilisation Factor	ENV
0.85	1.00-2.00	TBD	0.01	
0.85	0.85-1.00	TBD	0.10	
0.85	0.3	TBD	0.60	

Table 4-1ENV Calculations

Neurtailisation Value (Ag Lime)	Particle Size	Proportion	Utilisation Factor	ENV
0.85	<0.3	TBD	1.0	
Total ENV				TBD

Table Notes:

Soil Neutralisation

Total ENV = NV x UF x %proportion/100

TBD = to be determined by testing the particle size distribution of Aglime

Validation of Soil Treatment 4.3

GMF will maintain a stockpile register that allows for tracking of material from the source, through the treatment process, to the disposal location. To facilitate the tracking process and ensure risks of potential ASS oxidisation are managed, the following protocol will be implemented:

- 1. Four field samples will be collected from each quarter of the stockpile. Each sample should be a composite of five grab samples from the quarter of the stockpile being assessed.
- 2. The samples will be screened using the field peroxide method (Appendix B).
- 3. Field screening results will be assessed and actioned as follows: If all results show field pH peroxide (pHFOX) >6, then the soil is considered very low risk of being ASS and therefore suitable for on-site disposal.
- 4. If one or more results show pHFOX <6, submit a composite of the four samples for testing at the lab by the CRS method³.
- 5. If lab results confirm that no further lime is required, the material will be considered appropriately treated and suitable for disposal.
- 6. Note that the protocol for assessing whether sufficient lime has been applied, in accordance with NASSG (Water Quality Australia, 2018) is to determine the added Acid Neutralising Capacity (ANC) by subtracting the untreated soil ANC from the treated soil ANC and using this figure for the purpose of acid-base accounting.

Net acidity = TAA + SCr + NAS – (ANC after treatment – ANC before treatment)

(Successful treatment requires the Net Acidity to be ≤ 0)

TAA = Total Actual Acidity

- 7. If further liming is required, this will be applied, mixed and the verification testing repeated; and
- 8. Records of the testing and verification works will be maintained throughout the works.

Where test results show treatment is necessary, the recommended liming rate will be applied, and the lime will be mixed thoroughly before verification testing occurs.

³ Chromium Reducible Sulphate

5 Limitations

Within the limitations of the above agreed scope of work, this Acid Sulphate Soil Management Plan has been undertaken and performed in a professional manner, in accordance with generally accepted practices, using a degree of skill and care ordinarily exercised by members of its profession and consulting practice. No other warranty, expressed or implied, is made as to the professional advice included in this report.

This report is intended for the sole use of Gleeson Managed Fill (GMF). The scope of services performed in the preparation of this document may not be appropriate to satisfy the needs of other users, and any use or re-use of this document or of the findings, conclusions, or recommendations presented herein is at the sole risk of said user.

Background information, design bases, and other data have been furnished to EHS Support New Zealand Ltd (EHS Support) by GMF and/or third parties, which EHS Support has used in preparing this report. EHS Support has relied on this information as furnished and is neither responsible for nor has confirmed the accuracy of this information.

Opinions presented herein apply to the existing and reasonably foreseeable site conditions at the time of our assessment/review. They cannot apply to site changes of which EHS Support is unaware and has not had the opportunity to review. Changes in the condition of this property may occur with time due to natural processes or works of man at the site or on adjacent properties. Changes in applicable standards may also occur as a result of legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated, wholly or in part, by changes beyond our control.

Draft Acid Sulphate Soil Management Plan – Huntly Managed Fill References

6 References

Dear et al. (2002). Queensland Acid Sulfate Soil Technical Manual

- Department of Water and Environmental Regulation. (2015). *Treatment and Management of soil and water in acid sulfate soil landscapes.* Perth: Government of Western Australia.
- Roberts, R. M. (2017). Preliminary Assessment of the Acid Sulphate Soil Hazard in the Auckland Region. In G. C. Alexander, *Proceeding 20th New Zealand Geotechnical Society Geotechnical Symposium*. Napier: NZGS.
- Water Quality Australia. (2018). *National Acid Sulfate Soils Guidance: National acid sulfate soils identification and laboratory methods manual.* Canberra: Australian Government Department of Agriculture and Water Resources.

Appendix A Field PHox Method?

EHS Support New Zealand Ltd

A1 Soil field test equipment

It is important that prior to conducting the field tests, the appropriate testing equipment is obtained. For a basic set up the following items are required:

- 1) pH meter and electrode (charged and calibrated),
- 2) at least 2 buffer solutions (for example pH 4.0 and pH 7.0),
- 3) centrifuge tubes or beakers wide, unbreakable, heat resistant and clear (for example Falcon 50 mL polypropylene),
- 4) centrifuge tube or jar rack marked with soil sample depths use a separate rack for pH_F tests and pH_{FOX} tests in case they bubble over,
- 5) stirrers for centrifuge tubes,
- 6) 30% hydrogen peroxide (H₂O₂) pH adjusted to 4.5–5.5,
- 7) storage bottle for H_2O_2 ,
- 8) sodium hydroxide (NaOH) to raise pH of peroxide to 4.5–5.5 (pH 5.5 ideal),
- 9) deionised (DI) water,
- 10) squirt bottle for DI water,
- 11) tissues,
- 12) gloves and safety glasses,
- 13) protective clothing,
- 14) bucket to collect used soil and hydrogen peroxide,
- 15) bucket and brush to clean tubes for next sample,
- 16) recording sheets,
- 17) excess water for rinsing,
- 18) first aid kit especially eye wash solutions, and
- 19) 1 M hydrochloric (HCl) acid to test for shell presence.

A1.4.2 Field pH test (pH_F) – NSM-1.1

The procedure for the pH_F is outlined below:

- 1) Calibrate battery powered field pH meter according to manufacturer's instructions.
- Prepare the centrifuge tubes in a tube rack. Mark the rack with the depths to identify the top and bottom of the profile. Use separate racks for the pH_F and pH_{FOX} tests to prevent cross-contamination from violent pH_{FOX} reactions.
- For each layer place approximately half a teaspoon of soil into each of the pH_F and pH_{FOX} tubes. It is important the two sub-samples come from the same depth and are similar in characteristics.
- Place enough deionised (DI) water in the pH_F test tube to make a paste similar to 'grout mix' or 'white sauce'; stir the soil:water paste to ensure all soil 'lumps' are removed (demineralised

water can be substituted; never use tap water). Water must be added to the soil samples within 10 min of sampling to reduce the risk of RIS oxidation; monosulfidic material may start to oxidise in less than 5 min, substantially affecting pH_F results.

Immediately place the pH spear point electrode into the soil:water paste, ensuring the spear point is completely submerged. Never stir the paste with the electrode as this may damage the semi-permeable glass membrane.

Measure the pH_F with the calibrated pH meter.

Wait for the reading to stabilise and record the pH measurement.

All measurements should be recorded on a data sheet.

(a) Rating soil reactions of the pH_{FOX} test

Table A1 indicates the reaction scale for pH_{FOX} tests. The rate of the reaction generally indicates the level of RIS present, but depends also on texture and other soil constituents. A soil containing very little RIS may only have a slight reaction (L), however a soil containing high levels of RIS (remember the exact level of RIS cannot be determined using the pH_{FOX} test) is more likely to have an extreme/volcanic reaction (X–V), although there are exceptions. This rating scale alone should not be used to identify ASS. It is not a very reliable feature in isolation as there are other factors including manganese and organic acids which may trigger reactions. Reactions with organic matter tend to be more 'frothing' and do not tend to generate as much heat as sulfidic reactions. Manganese reactions can be quite extreme, but do not tend to lower the pH_{FOX}.

Reaction scale	Rate of reaction
L	Low reaction
М	Medium reaction
Н	High reaction
Х	Extreme reaction
V	Volcanic reaction

Table A1 Soil reaction rating scale for the pH_{FOX} test.

Source: DER (2015a).

A1.4.4 Interpretation of field pH tests

The pH_F test can help identify Actual ASS. While a pH_F of less than or equal to 4 is indicative of the presence of Actual ASS, it is not conclusive of the presence of ASS on its own, as naturally occurring, non ASS soils such as many organic soils (for example peats) and heavily leached soils may also have pH_F less than or equal to 4.

To identify as an Actual ASS, other evidence must be presented that indicates that the low pH_F has been mainly caused by the oxidation of reactive iron species (RIS). Such information includes the presence of jarosite in the soil layer/horizon, or the location of other Actual ASS or PASS materials within or in the nearby vicinity to the sampling location.

The difference between the pH_F and the pH_{FOX} is helpful in the preliminary identification of PASS. When combined, the pH_F and pH_{FOX} results can be a useful aid with soil sample selection for laboratory analysis during Stage 2 of the field site investigations.

The pH_{FOX} result when compared to the pH_F result can give an indication of the presence of RIS in the sample. To ensure accurate results both of these tests must be conducted in the field as soon as possible after the sample is collected as the pH of the soil sample can change relatively quickly with time (hours to days) even when recommended sample preservation techniques are employed. For

example, it is not unusual for soil pH test carried out at a laboratory to differ considerably (that is greater than a pH unit) from soil pH test measured in the field after even one day of storage, and as such, a laboratory determination of pH_F at a later date cannot be relied upon to represent field conditions at the time of sampling.

Soil field pH_F and pH_{FOX} tests whilst useful exploratory tools, however, are not determinative and cannot be substituted for laboratory analysis for either the identification of ASS materials and quantification of the acidity hazards these materials pose. A recent review of the utility of these field tests in Western Australia indicated that these tests only accurately identified ASS materials in 60 to 80 per cent of cases (DER 2015a).

A comparison of pH_F and pH_{FOX} test results can often give a strong indication of the presence of ASS. The greater the drop in pH from pH_F following the addition of peroxide, the greater the likelihood of PASS, although there are exceptions. A combination of a large difference between the two pH tests, a strong reaction with peroxide and a low pH after peroxide oxidation (that is pH_{FOX} less than 3) strongly indicates the presence of PASS.

However, it is important to note that the definitive confirmation of either the presence or absence of PASS materials in the field can only be accomplished by appropriate laboratory testing. Tables A2 and A3 provide some guidance on the interpretation of pH_F and pH_{FOX} test results, respectively.

pH value	Result	Comments				
$pH_F \le 4$, jarosite not observed in the soil layer/horizon	May indicate an AASS indicating previous oxidation of RIS or may indicate naturally occurring, non ASS soils	Generally not conclusive as naturally occurring, non ASS soils, such as many organic soils (for example peats) and heavily leached soils, often also return $pH_F \le 4$				
$pH_F \leq$ 4, jarosite observed in the soil layer/horizon	The soil material is an AASS	Jarosite and other iron precipitate minerals in ASS such as schwertmannite require a $pH < 4$ to form and indicate prior oxidation of RIS				
$pH_F > 7$	Expected in waterlogged, unoxidised, or poorly drained soils	Marine muds commonly have a pH > 7 which reflects a seawater (pH 8.2) influence. Oxidation of samples with H ₂ O ₂ can help indicate if the soil materials contain RIS				

Table A2 Interpretation of some pH_F test ranges.

DH value and reaction Result Comments						
pH value and reaction Strong reaction of soil with H ₂ O ₂ (that is X or V)	Useful indicator of the presence of RIS but cannot be used alone	Organic rich substrates such as peat and coffee rock, and soil constituents like manganese oxides, can also cause a reaction. Care must be exercised in interpreting these results. Laboratory analyses are required to confirm if appreciable RIS is present				
pH_{FOX} value at least one unit below field pH_F and strong reaction with H_2O_2 (that is X or V)	May indicate PASS	The difference between pH _F and pH _{FOX} is termed the Δ pH. Generally the larger the Δ pH the more indicative of PASS. The lower the final pH _{FOX} the better the likelihood of an appreciable RIS content. For example, a change from pH _F of 8 to pH _{FOX} of 7 (that is a Δ pH of 1) would not indicate PASS, however, a unit change from pH _F of 3.5 to pH _{FOX} of 2.5 would be indicative of PASS. Laboratory analyses are required to confirm if appreciable RIS is present				

Table A3 Interpretation of some pHox test ranges

pH value and reaction	Result	Comments
$pH_{FOX} < 3$, large ΔpH and a strong reaction with H_2O_2 (that is X or V)	Strongly indicates PASS	The lower the pH_{FOX} below 3, the greater the likelihood that appreciable RIS is present. A combination of all three parameters – pH_{FOX} , ΔpH and reaction strength – gives the best indication of PASS. Laboratory analyses are required to confirm that appreciable RIS is present
A pH _{FOX} 3–4 and Low, Medium or Strong reaction with H ₂ O ₂	Inconclusive	RIS may be present; however, organic matter may also be responsible for the decrease in pH. Laboratory analyses are required to confirm the presence of RIS
pH _{FOX} 4–5	Inconclusive	RIS may be present in small quantities, or poorly reactive under rapid oxidation, or the sample may contain shell/ carbonate which neutralises some or all acid produced on oxidation. Equally, the pH_{FOX} value may be due to the production of organic acids with no RIS present. Laboratory analyses are required to confirm if appreciable RIS is present
$pH_{FOX} > 5$, small or no ΔpH , but Low, Medium or Strong reaction with H_2O_2	Inconclusive	For neutral to alkaline pHF with shell or white concretions, the fizz test with 1 M HCl can be used to identify the presence of carbonates. Laboratory analyses are required to confirm if appreciable RIS is present and further testing is required to confirm that effective self-neutralising materials are present

Source: Adapted from DER (2015a).

Appendix B ASS Treatment System Design and Layout

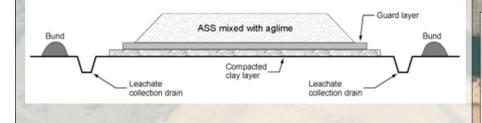
	REV	DATE	REVISION DETAILS	APPROVED			Davis
	Α	01.06.22	Draft for review.				Projec
					Gleeson Quar	ries 📕	Title
					diceson Quan		Title
	-					1	
					Drawn	Checked	Drawin
					MP		ESCP

oject	Huntly Quarry				
tle	Acid Sulphate Soil Management - Site Plan				
awing No.		Sheet No.			
SCP-001-01		1 of 2			

Acid Sulphate Soil Management Notes

The management of acid sulphate soils must be in accordance with the Huntly Managed Fill Acid Sulphate Management Plan (ASMP), May 2022 or most recent update.

The site must be managed top ensure, to the greatest extent practicable, that no acid sulphate spoil is stored within the processing area overnight or during rainfall.


Fill will be placed within the management area and processed on arrival. Testing will be undertaken as soon as lime is applied and mixed. As soon as the test report is acceptable under the criteria of the ASMP, the material will be transferred to the current active managed fill site.

No material will be received on site after 3:30pm on any working day, to provide sufficient time for processing and disposal to the fill site by the end of the day.

To the extent practicable, soil will not be received when rain is forecast.

Runoff will be piped to a holding pond, sized for up to the 50 year storm event (based on HIRDS data). The pond will be dewatered by pumping to the quarry pit when its pH is between 6 and 9.

Treatment pad typical detail (Figure 2-1 of ASMP)

1789123.86 5836995.97 Meters | Scale 1:2257

Runoff Collection Pond Details

The water collection tank must be sized to contain runoff from the 2500m² catchment for a 24hr 50 ARI event, based on HIRDS data. The pond will be dewatered to the quarry pit between rainfall events, once pH with the range of 6 and 9. The pH of the pond water will be monitored and buffered with caustic soda, if required, to ensure the pH range is achieved.

Pond Volume Calculation

2 ARI event: 68.9mm = = 172.5m³ 10 ARI event: 105mm = 262.5m³ 20 ARI event: 122mm = 305m³ 50 ARI event: 145mm = 362.5m³

Lime hopper. A sealed silo to prevent wetting of lime before application. To be re-filled on an as-required basis. Area to be bunded to ensure any spillage is contained and removed immediately after refilling completed.

Stabilised truck entry over the bund to allow fill to be transported to and from the stockpiles for

Bund must be a minimum of 1m high and will be formed using compacted clay and armored with rock.

To fill sites

Runoff collection pond

 -	-			-			
REV	DATE	REVISION DETAILS	APPROVED	_			Proic
A	01.06.22	Draft for review.		_			Proje
				_			
				-	Gleeson Quar	ries	Title
-				-	diceson Quar		Title
			ļ	-			
				-			
				-	Drawn	Checked	Draw
-				-	Diawii	Checked	
-				-	MP		ESC

SCP-001-02

2 of 2