Gleeson Quarries Ltd

Huntly Quarry Disposal Sites

Fill Site 2 – Geotechnical Design Report

Revision B

Report Prepared By Gaia Engineers, 5 Carmont Place, Mt Wellington, Auckland 1060, New Zealand

Document Set ID: 3490860 Version: 1, Version Date: 14/04/2022

Revision History

Revision No	Prepared By	Description	Date
А	МК	For Consent	12 th March 2020
В	МК	For Consent	14 th April 2020

Prepared by:

Mhit

Matthew Kernot Senior Engineering Geologist Gaia Engineers Ltd

Reviewed by:

Dr. Ka-Ching Cheung Director (Geotechnical) Gaia Engineers Ltd

Date: 14th April 2020

Copyright: This document and its contents are the property of Gaia Engineers Ltd and Gleeson Quarries Ltd. Any unauthorised employment or reproduction in full or in part is forbidden.

Table of Contents

1		In	troduction	7
	1.1		Previous Work	7
	1.2		Scope of Works	7
	1.3		Information Provided	7
2		Ex	isting Information Review	8
	2.1		Pilbrow Surveying Topographic Models and Aerial Photography – April 2019	8
	2.2		Geological and Resource Assessment of Huntly Quarry - 2006 (Terra Mining Ltd.)	8
	2.3		Huntly Quarry Fill Assessment & Design – June 2019 (S&A, Terra Mining Ltd.)	8
3		Si	te Description	10
	3.1		Location	10
	3.2		Site Topography	10
	3.3		Geomorphology	11
4		Te	est Pit Investigation	12
5		Ge	eology	13
	5.1		Regional Geology and Structure	13
	5.2		Local Stratigraphy	14
	5.	2.1	Holocene Alluvial/Colluvial Materials	14
	5.	2.2	Puketoka Formation	14
	5.	2.3	Waikato Coal Measures	14
	5.	2.4	Newcastle Group	14
	5.3		Geological Risks and Mitigation	14
	5.	3.1	Holocene Alluvial/Colluvial Materials	15
	5.	3.2	Waikato Coal Measures Bedding	15
	5.	3.3	Newcastle Group Greywacke	15
	5.4		Groundwater	16
6		Pr	oposed Fill Design	17
7		SI	ope Stability Analysis	19
	7.1		Geotechnical Parameters	19
	7.2		Waikato Coal Measures Bedding Parallel Shears	20

7.3 Fill Staging and Sensitivity Checks	21
7.4 Pore-Water Pressure	21
7.5 Seismic Design	22
7.6 Acceptance Criteria	22
7.7 Results	23
7.8 Seismic Induced Displacement	23
8 Proposed Fill Construction Recommendations	24
8.1 Sediment Control and Stormwater Discharge	24
8.2 Haul Roads	24
8.3 Stripping	24
8.4 Drainage	25
8.4.1 Carrier Drain	
8.4.2 Collector Drains	
8.4.3 Basal Drainage Blanket	
8.4.4 Internal Drainage Blankets	
8.5 Structural Containment Bunds	27
8.5.1 Basal Bunds (Stage 1)	
8.5.2 Intermediary & Upper Structural Bunds	
8.5.3 External Benches	
8.6 Non-Structural Managed Fill	
8.6.1 "Bottom Up" Filling	
8.6.2 Maximum Managed Fill Gradients During Filling	
8.7 Fill Control	29
8.7.1 Structural Fill Specifications	
8.7.2 Non-Structural Managed Fill	
8.7.3 Fill Testing Requirements	
8.8 Displacement Monitoring	
8.8.1 Pore-Water Pressure monitoring	
8.8.2 Excess Displacement Mitigation Response	
9 Conclusions	
10 Limitations	
10.1 Specific Limitations	

10.2	2 General Limitations	34
11	Risk and Mitigation	35
12	Safety in Design (SiD) Considerations	36

Appendices:

Appendix A – Drawings
Appendix B – Test Pit and Historic Borehole Logs
Appendix C – Slope Stability Outputs
Appendix D – Safety in Design Considerations

Table of Tables:

Table 1: Summary of Measured Field Vane Shear Strength (Su)	12
Table 2: Summary of Proposed Fill Design Geometries	17
Table 3: Cross Sections for Slope Stability Analyses	19
Table 4: Slope Stability Analysis - Geotechnical Soil Strength Parameters for Natural Subgrade Materials	19
Table 5: Slope Stability Analysis – Generalised Hoek-Brown Rock Strength Geotechnical Parameters for	
Natural Subgrade Materials	20
Table 6: Slope Stability Analysis - Geotechnical Soil Strength Parameters for Fill Materials	20
Table 7: Design Cases and Required Factor of Safety	22
Table 8: Summary of Slope Stability Analysis Results	23
Table 9: Compaction Control Criteria & Frequency of Testing - Cohesive Material	29
Table 10: Compaction Control Criteria & Frequency of Testing - Non-Cohesive Fill (Brown Rock)	30
Table 11: Compaction Control Criteria & Frequency of Testing - Non-Structural Fill	30
Table 12: Displacement Monitoring Frequency and Alert Trigger Levels	31
Table 13: Key Geotechnical Risk and Mitigation Strategy	35

Table of Figures

Figure 1: Oblique Image looking Northeast at Fill Site 2 Showing Topographic Features	10
Figure 2: Published Geological Map of the Huntly Quarry and Fill Sites.	13
Figure 3: Waikato Coal Measures - Bedding Parallel Shears Strength Parameters	21

Drawing List:

DRAWING NO:	DRAWING TITLE:	REVISION:
2325-23-01	OVERALL PROJECT LAYOUT WITH CURRENT CONTOURS	А
2325-23-02	OVERALL PROJECT GEOLOGICAL MAP	А
2325-23-03	PROPOSED FILL SITE 2 FINAL SURFACE AND DRAINAGE	В
2325-23-04	MUUCKOUT AREA AND UNDERFILL DRAINAGE PLAN	А
2325-23-10	STAGE 1 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-11	STAGE 2.1 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	А
2325-23-12	STAGE 2.2 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-13	STAGE 3.1 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	А
2325-23-14	STAGE 3.2 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-15	STAGE 4.1 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-16	STAGE 4.2 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-17	STAGE 5.1 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-18	STAGE 5.2 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-50	GEOLOGICAL AND PROPOSED FILL SECTION 01	А

DRAWING NO:	DRAWING TITLE:	REVISION:
2325-23-51	GEOLOGICAL AND PROPOSED FILL SECTION 02	А
2325-23-52	GEOLOGICAL AND PROPOSED FILL SECTION 03	А
2325-23-101	TYPICAL BUND AND MANAGED FILL – ARRANGEMENT AND DETAIL	В
2325-23-102	TYPICAL DRAINAGE DETAILS	А
2325-23-103	DISPLACEMENT MONITORING LAYOUT	В

EXECUTIVE SUMMARY

Gaia Engineers Ltd have been engaged by Gleeson Quarries Ltd to undertake detailed geotechnical design of the managed fill placement area known as Fill Site 2 located directly to the north of the existing Huntly Quarry pit as shown in Figure 1.

Concept designs and geotechnical analyses were previously carried out for a total of four fill sites as shown in Figure 2 and Drawing No.: 2325-23-01 included in Appendix A. Our key findings and recommendations are presented in the following report:

• 2325-12-GQ-01 (Huntly Quarry Disposal Sites - Geotechnical Assessment)_Rev C

Specifically, this report presents our key findings and recommendations for the development of Fill Site 2. The Fill Site 2 area is proposed to primarily accommodate imported managed fill material.

Test pit site investigations for Fill Site 2 were undertaken in two stages. The first stage involved the excavation of pits during June, 2019 in readily accessible areas. The results of this investigation were presented in the above mentioned concept report – 2325-12-GQ-01 (Huntly Quarry Disposal Sites - Geotechnical Assessment)_Rev C.

In support of the detailed design undertaken and presented in this report, additional test pits were excavated in October, 2019. The detailed design investigation focused on more difficult to reach areas near the toe of the proposed fill site in order to confirm the foundation conditions. It was discovered during the detailed design investigations that founding and toe conditions for the proposed fill were better than originally reported on at the concept stage. The toe of the fill area was originally thought to consist of Waikato Coal Measures material. Detailed design stage investigations confirmed that the toe material in fact belonged to the Newcastle Group greywacke unit.

Fill Site 2 is a broad gully that tapers sharply towards the toe in a westerly direction as shown in Figure 1. The broad eastern end of the gully is predominantly underlain by soil and rock of the Waikato Coal Measures group whilst the narrower and incised western end of the gully is underlain by weathered soil and rock of the Newcastle Group Greywackes.

The general design of the fill consists of:

- A 2m deep toe-key into the in-situ Newcastle Group Formation at the toe of the fill
- Inter-bench external batter angles of between 2H:1V and 4H:1V
- 5m wide external benches
- 0.4m thick drainage blankets every 10m vertical distance

In addition to the proposed drainage blankets installed within the fill, a basal drainage blanket with a network of underfill drains consisting of a main carrier drain and smaller collector drains will be necessary to ensure the long-term stability of the fill.

Displacement monitoring of the completed fill stages as well as the final profile will be necessary to monitor the stability of the fill both during and after construction.

1 Introduction

Gaia Engineers Ltd. have been engaged by Gleeson Quarries Ltd. to provide a geotechnical design for a managed fill placement area known as Fill Site 2 as shown in Figure 1 and Figure 2 as well as Drawing No.: 2325-23-01 included in Appendix A.

1.1 Previous Work

The proposed fill site was previously covered along with three other nearby fill sites in the concept design and geotechnical appraisal report produced by Gaia titled as below:

• 2325-12-GQ-01 (Huntly Quarry Disposal Sites - Geotechnical Assessment)_Rev C

1.2 Scope of Works

The scope of works for this report includes:

- a. Undertaking a review of existing geological and geotechnical data;
- b. Carry out additional test-pit investigation to assess foundation conditions under Fill Site 2 area;
- c. Perform analysis of the structural data, trial pit data and any other investigations data appropriate to complete geotechnical investigations;
- d. Assess ground conditions, review stability and risks associated with the potential fill site;
- e. Undertake detailed stability analyses covering both the existing and the proposed slopes;
- f. Provide comments and recommendations on geotechnical matters relating to civil design and construction;
- g. Provide engineering plans for the proposed overburden fill disposal area.

1.3 Information Provided

The following data and reports were provided and reviewed in preparation of this report:

- Survey Data from Pilbrow Surveying Ltd. covering Fill Sites 2 to 5 as surveyed during April 2019 including:
 - o Topographic contours
 - o High resolution orthorectified aerial images
- Huntly Quarry Fill Assessment & Design by Terra Mining Consultants Ltd. dated June 2019.
- Geological and Resource Assessment of Huntly Quarry by Stevens & Associates and Terra Mining Consultants Ltd. dated July 2006.

2 Existing Information Review

The reports and data listed in Section 1.3 were reviewed in this project. A summary of material referenced is presented in the following sections:

2.1 Pilbrow Surveying Topographic Models and Aerial Photography – April 2019

Survey data provided by Pilbrow Surveying Ltd. has been used to develop a 3D surface model of the proposed fill sites using the software Eureka by Maptek. Test pit data collected during the site investigation undertaken during the previous appraisal report, and in support of this report, was also input into the 3D model. Orthorectified aerial images provided by Pilbrow were then overlain on the surface models. These models along with field notes aided in the production of the engineering geological map included in Drawing 2325-23-02 in Appendix A.

2.2 Geological and Resource Assessment of Huntly Quarry – 2006 (Stevens & Associates, Terra Mining Ltd.)

This report covered the geological assessment of the Huntly Quarry pit as well as the exploration and assessment of a potential resource block to the west of the existing pit. A series of deep boreholes were drilled around the perimeter of the existing pit and also in the proposed block to the west. A 3D geological model was created that covered the existing pit and extended towards the so called 35-year expansion line. Geological modelling and mapping did not extend into the currently proposed fill site areas.

Boreholes HQ006 and HQ007 (Locations are shown on Drawing No.: 2325-23-01 in Appendix A and logs are presented in Appendix B) provide some information regarding the boundary between the Waikato Coal Measures and the Newcastle Group Greywacke. However, the projection of this boundary westward and northward into the proposed fill sites becomes increasingly uncertain and therefore may be unreliable. This geological boundary is not expected to be a governing factor regarding the stability and design of the proposed fill sites and will not be relied on for modelling.

The investigation undertaken during the production of the Terra Mining 2006 report also included geological mapping of the quarry pit. This included observation and discussion of bedding, folding and faulting structures. The relevance of these measurements to the proposed development is discussed in Section 5.3.

2.3 Huntly Quarry Fill Assessment & Design – June 2019 (Terra Mining Ltd.)

This report presented revised aggregate potential and required overburden stripping volumes as well as conceptual fill surfaces for the four proposed fill sites. These concept surfaces have been used as the basis of the investigation and reporting presented here.

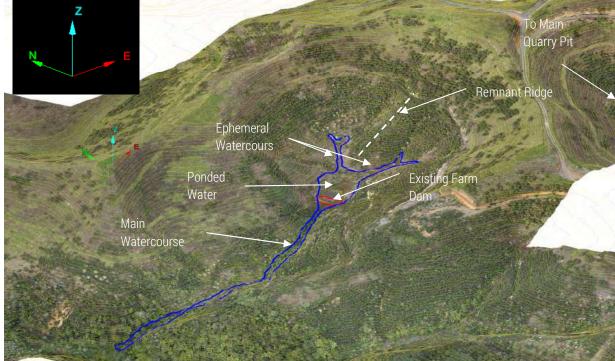
It is noted that the fill footprints presented in this report are conceptual and may be subject to geotechnical and civil specific design.

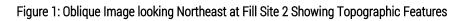
The concept fill footprint for Fill Site 2 has not been significantly changed and has been adopted in the final design of Fill Site 2. The proposed external batter angle, inter-bench height and bench widths have also been found to be suitable to the proposed site and adopted with minor variations primarily due to surrounding surficial drainage.

The conceptual quarry pit boundary provided in this report has also been used to assess the stability of the fill in relation to the final quarry pit. This assessment was carried out in a preliminary manner. This preliminary analysis was completed to test the impact of the proposed fill area on the conceptual quarry pit limit. Detailed investigation and design of the final quarry pit walls will need to be undertaken.

3 Site Description

3.1 Location


The location of Fill Site 2 and its relation to the quarry pit and surrounding proposed fill sites is presented in Figure 1 and Figure 2 as well as in Drawing No.: 2325-23-01. The site is accessed from the Huntly Quarry located at 300 Riverview Road in the northern Waikato township of Huntly.


3.2 Site Topography

Fill Site 2 is a broad gully being approximately 200m wide that trends in an east to west direction. The upper reaches of the gully exhibit sign of shallow instability in the form of small slump scarps as well as terracettes indicative of soil creep.

Two confined ephemeral watercourses run either side of a remnant ridge situated centrally within the gully, draining into an artificially dammed pond at the base of the remnant ridge. The pond drains into a more steeply incised main water course that follows a relatively straight path out of the gully. The watercourse was observed to be flowing downstream of the pond during all of our site visits. The ephemeral watercourses upstream of the pond however, were only observed to be flowing water beneath the surface within the layers of colluvial and alluvial material. These features are shown in Figure 1.

The steeply incised banks immediately rising from the water course exhibit slopes of between 1.5H:1V 2H:1V covering approximately 20m in vertical height. The upper slopes of the gully leading to the surrounding ridgelines average a gradient of approximately 2.5H:1V

3.3 Geomorphology

The geomorphology of the site is predominantly controlled by the underlying geology. The broader ridge area at the head of the Fill 2 gully exhibits evidence of historical shallow slumping and some evidence of creep terracettes. These features are attributed to the thicker weathering profile of the underlying Waikato Coal Measures material. Seasonal wetting and drying of these soils cause the soils to creep downslope. At the boundary between the younger soils and the weathered Newcastle Group Greywacke, the valley becomes noticeably narrower and steeper. The shape of the valley within this material is more controlled by erosion of the underlying weathered soils and is less affected by slumping and the soil creep depth is much shallower.

4 Test Pit Investigation

Test pit site investigations commenced on the 17th of June 2019 during the geotechnical appraisal and concept design stage. 7 (No's.) test pits were excavated within the Fill Site 2 area pits by means of a 30t excavator to a maximum depth of 4.5m deep at the time.

In preparation of this report, an additional 6 (No.) test pits were excavated to a maximum depth of 6.2m deep using the same plant during the detailed design investigations undertaken on the 7th of November 2019.

The soils and weak rock units exposed in the pit walls were logged generally in accordance with the NZGS Field description of soil and rock guidelines by a Gaia Engineers Ltd. engineering geologist. In addition, field shear vane readings were taken in exposed soil materials within the test pits where possible.

No representative surfaces for engineering geological mapping were observed in the faces of the pit walls. This does not discount the potential for unfavourable structural features. However, the visibility of structural features tends to become obscured as the material becomes more weathered. This was observed to be the case during the test pit investigations.

The locations of the test pits are shown on Drawing No.: 2325-23-01 included in Appendix A. Test Pit logs and relevant historical borehole logs are presented in Appendix B

The following table presents a summary of the measured field vane shear strengths in each geological unit:

Geological Unit	Minimum Measured Vane Shear Strength (kPa)	Maximum Measured Vane Shear Strength (kPa)
Recent Alluvium and Colluvium	41	140
Residually to Completely Weathered Waikato Coal Measures Material	>188	>188
Residually to Completely Weathered Newcastle Group Material	136	>188
Notes: 1) 188kPa is the maximum BS1377 corrected the dial used during the test-pit investigation		-

Table 1: Summary of Measured Field Vane Shear Strength (Su)

Description of the lithologies encountered during the test pit investigation are discussed in Section 5.

5 Geology

5.1 Regional Geology and Structure

Reference to GNS Science QMap 1:250,000 series shows that the proposed four fill sites of the Huntly Quarry Fill Disposal project are underlain by Newcastle Group Siltstone and Waikato Coal Measures of the Te Kuiti Group. The Huntly Area is situated on the north-western flank of the Hakarimata and Taupiri Ranges – a north-east to south-west tending mountain range.

The regional structural fabric of this range consists of similarly trending anticlinal and synclinal fold structures. One of the major synclinal fold features is mapped as running through the quarry area and bifurcating Fill Site 5. A large north to south trending inactive fault is present to the west of the quarry and fill sites. The north-south trending fault line forms the larger drainage gully that Fill Site 2 flows into.

An annotated geological map from the GNS Science New Zealand Geology Web Map is presented below:

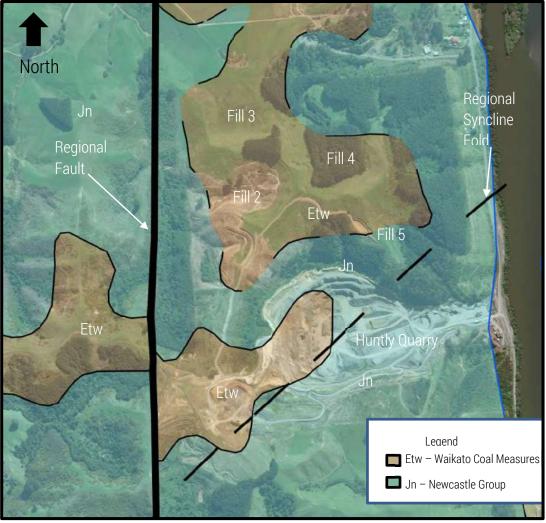


Figure 2: Published Geological Map of the Huntly Quarry and Fill Sites. *Modified from GNS Science Web Map Service Under Creative Commons Licence*

5.2 Local Stratigraphy

The following geological units have been observed or inferred within the Fill Site 2 area:

5.2.1 Holocene Alluvial/Colluvial Materials

The material is observed in the invert of the gully and within the watercourse. This material consists of texturally disturbed, firm silts and clays with varying organic content. It is typically saturated with active seepage and groundwater passage through this material visible in the near-surface.

5.2.2 Puketoka Formation

The material is inferred to be late Pleistocene to Holocene aged alluvial ash deposits. This material is present at the top of the highest ridges such as the ridge at the eastern extent of the Fill Site 2 as observed during walkover mapping. It consists of stiff to very stiff, predominantly white coloured pumiceous silts.

5.2.3 Waikato Coal Measures

Late Eocene to Early Oligocene aged basal unit of the Te Kuiti Group. The Waikato Coal Measures unconformably overly the basement rock at the Huntly Quarry. This unit is typically weathered to soils up to a depth of approximately 5 to 6 metres as observed nearer the ridges with weathering profiles being thinner towards the invert of the incised gully. The soil consists of stiff, light coloured silts and clays with minor amounts of fine sand. Beyond this depth the unit typically presents as a very weak to weak mudstone and fine-grained sandstone. Carbonaceous and Coal beds were encountered in test-pits approximately mid-way up the gully slopes. The carbonaceous beds were thin with organic material disseminated in a mudstone matrix.

5.2.4 Newcastle Group

Late Triassic aged rocks of the Newcastle Group, part of the Murihiku terrane make up the basement bedrock material present at the subject site. Less weathered examples of this material are currently exploited as an aggregate resource at the Huntly Quarry. This unit has deeply weathered to soils and weak rock as observed in the test pit investigation of Fill Site 2. The weathered soils are described as stiff silts with minor amounts of fine sand. The unweathered material (as exposed in the quarry pit) is described as strong, jointed, dark grey siltstone and mudstone.

Within Fill Site 2, highly weathered to moderately weathered greywacke of this group was reached within the eroded invert of the existing gully. At this weathering grade the material exhibited a very weak rock strength. However, the rock mass is heavily jointed with heavy oxide staining present.

5.3 Geological Risks and Mitigation

The three geological units categorised during site investigations and detailed in the previous section present different properties that will need to be considered in the design.

5.3.1 Holocene Alluvial/Colluvial Materials

These materials are considered to be too weak and too wet to remain under the proposed fill. These materials will be removed during the gully muck-out stripping and drainage installation prior to the emplacement of any fill.

5.3.2 Waikato Coal Measures Bedding

Planes of weakness that run parallel to the bedding of the Waikato Coal Measures mudstone are known to be associated with this unit. These planes are most commonly found beneath the residually weathered soil, near the interface with the relatively unweathered rock. Whilst slips involving the material above these weak planes are known to occur in this material type it should be noted that this mechanism has not been observed at the Huntly Quarry.

Bedding parallel weaknesses were not observed during the test pit investigation. Relatively uniform strength was observed within the residually weathered material followed by a gradual transition through weathering grades to moderately-slightly weathered material present in the base of the gullies.

However, sensitivity of the design to the presence of bedding parallel weaknesses will be checked for during the slope stability analysis as described in Section 7.2.

5.3.3 Newcastle Group Greywacke

Weathering:

The toe area of Fill 2 will be directly founded on the local basement material. The depth to the unweathered material has not been confirmed in this area. However, very weak to weak, highly to moderately weathered rock was observed within the test-pits located near the invert of the gully.

Within Fill 2, the unweathered component of the basement bedrock is overlain by variably thick weathered horizons. Due to the uncertain depth to unweathered material, the design will be undertaken based on a conservatively large thickness of weaker weathered material being present beneath the toe of the fill.

Structure:

Published GNS geological maps indicate that a large fault feature is running approximately in the north/south direction immediately at the west of the Fill Site 2 Gully. This fault feature is located at approximately 140m to the west of the toe of the proposed works. The fault is therefore not expected to be encountered during the construction of Fill Site 2. However, given the tectonic history of this geological unit, smaller scale fault structures related to the main faulting sequence are expected.

Whilst faults can cause zones of significant weakness as compared to surrounding unweathered material, this effect becomes less pronounced in the highly and completely weathered material where the proposed development is to be founded.

If fault weakened materials are observed within the subgrade during this stripping operations, undercuts and replacement with compacted granular fill will be required.

5.4 Groundwater

No information is available on the regional ground water tables. However, this water table is expected to be drawn down somewhat by the proximal quarry pit. It is therefore expected to be below the zone of influence expected to be imposed by the proposed fill material.

Perched groundwater in the surficial materials is expected to be of much higher significance to the stability of the proposed fill. This perched groundwater table is expected to seep continuously from the natural subgrade and concentrate at the location of the existing watercourse even after the area has been 'sealed' over by the proposed fill. It is for this reason the drainage structures and measures as well as specific construction considerations proposed in the later sections of this report will be adopted.

6 Proposed Fill Design

The proposed fill design adopts approximately the same footprint as originally proposed by Terra Mining in the 2019 Huntly Quarry Fill Assessment & Design. Slight modifications have been made to allow for some of the batter and bench geometries to promote drainage.

The toe of the fill intersects the gully invert at approximately RL50 and the proposed fill rises to approximately RL115, just below the main ridgeline of the gully surrounding the fill.

Three external batter gradients have been adopted to allow the fill to more efficiently climb out of the incised lower gully, maximise the internal fill volume and finally stay below the surrounding gully ridge lines. External batters representing the first bench heights or approximately 10m in elevation will be 2H:1V. Intermediary external gradients above the first bench heights will be 3H:1V whilst the uppermost external batter angle will be 4H:1V.

The basal bund (Stage 1 Bund) must be constructed to the full 10m height and will be required to be keyed a minimum of 2m vertically into the underlying natural subgrade. All subsequent bunds above the Stage 1 bund should also be constructed to the designed height prior to managed fill being placed behind the bund. The height of the bunds above Stage 1may be split into 5m height to reduce the overall amount of structural fill required.

The general geometries for the proposed fill at Fill Site 2 are summarised in Table 2. A typical detail showing the proposed bund geometry is presented in Drawing No.: 2325-23-101 included in Appendix A.

Bund Level	Approximate RL Represented	External Batter Gradient	Minimum Top of Bund Width	Maximum Internal Batter Gradient	Proposed External Berm/Bench Width
Lowest Bund – Stage 1	50 to 60	2H:1V	10m	1.5H:1V	5m
Secondary Bund – Stage 1	60 to 70	3H:1V	10m	1.5H:1V	5m
Bunds – Stage 2 to 3	70 to 80	3H:1V	10m	1.5H:1V	5m
Bunds – Stage 4	90 to 100	3H:1V	5m	1.5H:1V	5m
Upper Bund – Stage 5	100 to 110	4H:1V	5m	1.5H:1V	5m
Notes:	1) The top of the fi and north respectiv		ainage gradient of ap	oproximately 5% and	10% to the south

Table 2: Summar	v of Proposed F	ill Design Geometries
Table El Gallinna	,	in Boolgir Goollioarioo

The proposed fill geometries result in a calculated total volume of approximately 717,000m³. The proposed fill area has a footprint of approximately 45,000m².

Swale drains will be required along the length of each external bench to convey water from the internal drainage blankets and also stormwater received by the bench and external batters. The bench swales will drain to the northern and southern extents of the fill where water will be taken to the toe of the fill by drop flume structures.

The stormwater design for the bench level swales and the eastern and western flumes will need to be undertaken by a stormwater design specialist and is outside the scope of this report.

7 Slope Stability Analysis

Slope stability assessment has been carried our using limit equilibrium methods in the program SLIDE by RocScience. GLE/Morgernstern-Price as well as Bishop methods have been checked.

Two representative cross sections have been developed and analysed. The subject cross sections and the target slope stability check component is summarised in Table 3 below:

Cross Section	Main Reason for Analysis
Cross Section 1	Main section through the centre of the proposed fill.
Cross Section 2	Design check to analyse stability of the back wall of the fill in proximity to the main quarry pit and the concept final pit extents.

Table 3: Cross Sections for Slope Stability Analyses

The geological models used for analyses have been determined using the test pit site investigation data. Test pit investigations were able to confirm the presence of highly to moderately weathered greywacke bedrock material near the invert of the existing drainage channel.

The presence of the unweathered rock boundary was not confirmed during this investigation. As such, slope stability models have placed the unweathered bedrock boundary at a conservatively deep level based on where the boundary is observed within the main quarry pit. The design of the managed fill is not reliant on the presence of unweathered bedrock material.

7.1 Geotechnical Parameters

Geotechnical parameters adopted in the limit equilibrium slope stability analyses are summarised in Table 4 and Table 5 below:

	Mohr-Coulomb Parameters			Undrained Strength Parameters	
Soil Unit	Unit Weight (kN/m³)	Cohesion - c' (kPa)	Angle of internal friction – Φ (°)	Vertical Stress Ratio	Undrained Shear Strength – Su (kPa)
Residually Weathered Waikato Coal Measures	18 ~ 19	5	30	N/A	70
Waikato Coal Measures Bedding Parallel Shears	20	10 0 ^{Note1}	30 18 ^{Note1}	N/A	N/A
Residually and Completely Weathered Greywacke	18 ~ 19	8	30	N/A	100 ~ 150
Note	1) See Section 7.2 and Figure 3 for anisotropic material strength properties and angular distribution				

Table 4: Slope Stability Analy	ysis – Geotechnical Soil Strengt	b Daramatara for Natural Su	Ibarada Matariala
Table 4. Slope Stability Anal	iysis – Geolechnical Soli Strengt	In Parameters for Natural St	indrane marellars

Table 5: Slope Stability Analysis - Generalised Hoek-Brown Rock Strength Geotechnical Parameters for Natural
Subgrade Materials

Geological Unit	Unit Weight (kN/m³)	Unconfined Compressive Strength (MPa)	GSI ^{Note 1}	Material Constant (mi)	Disturbance Factor (D)
Moderately to Slightly Weathered Waikato Coal Measures Mudstone	20-22	2.5	30	7	0.0
Highly Weathered Greywacke	19	0.5	30	18	0.0
Moderately Weathered Greywacke	20-22	5	40	18	0.0
Slightly to Unweathered Greywacke	26	50	50	18	0.0
Notes:	1) Geological Strength Index.				

Table 6: Slope Stability Analysis – Geotechnical Soil Strength Parameters for Fill Materials

	Mohr-Coulomb Parameters			Undrained Strength Parameters		
Fill Material	Unit Weight (kN/m³)	Cohesion - c' (kPa)	Angle of internal friction – Φ (°)	Vertical Stress Ratio	Undrained Shear Strength – Su (kPa)	
Structural Fill	18	5	30	N/A	135	
Managed Fill	15-16	3	23	0.3	30	
Managed Fill – Material Strength Sensitivity	N/A	N/A	N/A	0.22	30	

7.2 Waikato Coal Measures Bedding Parallel Shears

Planes of weakness that align parallel with the bedding orientation are known to be associated with the Waikato Coal Measures group materials. This weak layer is typically found directly overlying the less weathered rock layers.

During mapping of the area, bedding was observed but was not able to be mapped to a level of certainty suitable for modelling. As such, Waikato Coal Measures bedding has been modelled using a worst credible case anisotropic strength function. The worst-case strength function comprises a c'=0kPa and Φ =18° at an angular range of between 4° and 35° dipping out of the proposed slope. The anisotropic strength parameters are summarised in Figure 3: Waikato Coal Measures - Bedding Parallel Shears Strength Parameters below.

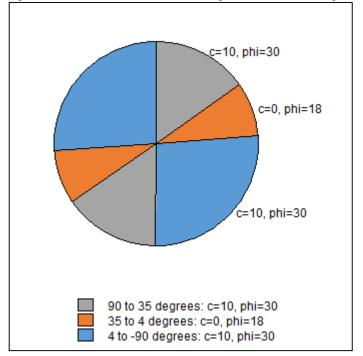


Figure 3: Waikato Coal Measures - Bedding Parallel Shears Strength Parameters

7.3 Fill Staging and Sensitivity Checks

Slope stability design checks using 5 "stages" of filling have been undertaken. Each stage comprises a 10m vertical lift of managed fill which are separated by drainage blankets. Each main stage is further separated into two sub-stages which are contained behind 5m high structural fill bunds.

In order to model this construction method, each filling stage has been analysed with additional checks used to test the sensitivity of the design to the importation of material with low strength and/or high-water content.

It is expected that throughout the course of placing an individual stage of material, pore-water pressure will be allowed to partially dissipate through the basal and inter-stage drainage blankets. This process is expected to be guided by the ability of construction machinery to track over the surface of the placed managed fill.

The fill staging checks were only undertaken on Cross Section 1 as it is the most representative of the full fill thickness. It was subsequently identified that the fill design was not sensitive to deep failure through the fill thickness. Instead, failure surfaces are all located closer to the underside of the structural bunds.

7.4 Pore-Water Pressure

It is believed that pore-water pressure within the proposed fill material is a dominant factor governing the stability of the fill. As such, two methods of modelling pore-water pressures have been checked. Firstly, residual pore-water pressures have been modelled within both the structural fill bund material and managed fill material using an Ru coefficient. Secondly, a piezometric water head has been

www.gaia-engineers.co.nz

modelled on the top of each main filling stage. The Hu coefficient of the piezometric lines can then be altered to model both extreme and moderate groundwater conditions.

Control of pore-water pressure within the fill material is primarily achieved by the inclusion of drainage blankets both at the base of the fill and at 10m vertical intervals within the fill. Likewise, monitoring during the placement of the drainage blanket and fill will help to shorten the excess pore water pressure dissipation period.

7.5 Seismic Design

Seismic design criteria have been selected based on the recommendations provided in AS/NZS 1170.5:2004 and the New Zealand Transport Agency Bridge Manual, Third edition, Amendment 3, 2018.

The proposed fill has been classified with an "Importance Level" of 2 and analysed for an annual probability of exceedance of the damage control limit state (DCLS) earthquake event of 1/500 years.

The corresponding peak ground acceleration (PGA) for the site based on the above information was calculated to be 0.24g for class C subsoil conditions.

The Bridge Manual also provides a design earthquake magnitude of 5.8 for the Huntly area.

7.6 Acceptance Criteria

Acceptable stability of the proposed fill is to be determined by the calculated Factor of Safety (FoS). The calculated slip circle with the lowest factor of safety affecting the fill is reported for each design case. The design cases tested and the corresponding minimum FoS required is reported Table 7 below:

Design Case	Required Factor of Safety (FoS)
Long-term Conditions – Moderate Groundwater Level	>1.4
Extreme Groundwater Conditions	>1.3
Construction Pore-Water Pressure and Medium-Term Strength Conditions	>1.2
Material Strength Sensitivity Strength Conditions	>1.0
DCLS Seismic Loading	>1.2 or <150mm of displacement if FoS <1

Table 7: Design Cases and Required Factor of Safety

7.7 Results

A summary of the critical Factor of Safety for each case is presented in Table 8 below.

Cross Section	Design Case	Assessed Factor of Safety
	Existing Slope	0.915
	Completed Fill – Piezometric Moderate Groundwater	1.519
	Completed Fill – Piezometric Extreme Groundwater	1.308
	Completed Fill – Ru Pore-Water Pressure	1.547
	Completed Fill – Undrained Strength Case	1.326
	Stage 1 Filling – Long Term Strength	1.933
	Stage 1 Filling – Undrained Strength	2.169
	Stage 1 Filling – Material Variability	1.626
	Stage 2 Filling – Long Term Strength	1.775
Fill 2 – Cross	Stage 2 Filling – Material Variability	1.828
Section 1	Stage 2 Filling – Undrained Strength	1.800
Section	Stage 2 Filling – Medium Term Strength	1.845
	Stage 3 Filling – Long term strength	1.421
	Stage 3 Filling – Material Variability	1.562
	Stage 3 Filling – Undrained Strength	1.482
	Stage 3 Filling – Medium Term Strength	1.653
	Stage 4 Filling – Long term strength	1.322
	Stage 4 Filling – Material Variability	1.358
	Stage 4 Filling – Undrained Strength	1.225
	Stage 4 Filling – Medium Term Strength	1.410
	DCLS Seismic Loading	0.608
	Existing Slope	1.469
Fill 2 – Cross Section 2	Concept Quarry Pit Extents – No Managed Fill	1.273
Section Z	Concept Quarry Pit Extents – Completed Managed Fill	1.273

Table 8: Summary		o Stahility	/ Anali	veie Reculte
Table 6. Summar	101 2104		y Anar	ysis nesults

7.8 Seismic Induced Displacement

The Factory of Safety under DCLS seismic loading was calculated to be less than the required 1.2. As such, seismically induced displacement has been calculated using the methods described by Jibson (2007), Ambraseys & Srbulov (1995) and Anderson et al (2008).

The critical ground acceleration for Cross Section 1 was calculated to be 0.05g where the global FoS was \approx 1.

Based on the above parameters the calculated seismic induced displacement with a 50% confidence level was determined to be 65mm. A displacement of this magnitude will have negligible impact on a fill slope of this nature that is able to be maintained by the owner.

8 Proposed Fill Construction Recommendations

Based on our review of existing geological/geotechnical information, walk-over inspection/mapping test pit investigation and subsequent slope stability analyses and design, we are of the opinion that the selected site is generally suitable for use as a fill sites for placement of managed fill subject to the following construction recommendations.

The following sections outline our recommendations regarding drainage, construction methodology and monitoring in order to ensure the designed stability factors are achieved. Where possible the following sections have been arranged in the anticipated order of construction. These recommendations should be read in conjunction with the relevant construction drawings presented in Appendix A for additional information.

8.1 Sediment Control and Stormwater Discharge

The anticipated location of the sediment control pond has been shown on Drawing No.: 2325-23-03. The location of this pond is not anticipated to adversely affect the stability of the proposed fill due to the ponds position at the base of the gully with a shallow depth to competent material. Changes to the proposed location of the sediment control pond location should be referred back to the geotechnical designer for review.

It should be noted that the design of the sediment control pond, related sediment control devices and stormwater conveyance channels/swales/flumes is outside the scope of this report and our work.

8.2 Haul Roads

During the initial stages of the fill, it will be required to transport material to the working toe of the fill. Where possible existing forestry tracks should be utilised. If additional tracks are required, the location of these may affect ground stability and should be discussed with the geotechnical designer prior to undertaking the work as additional design may be required.

8.3 Stripping

Prior to commencement of filling – vegetation and topsoil along with soft and otherwise deleterious material should be removed to stockpile to expose subgrade conditions. Subgrade conditions should be inspected by a suitably qualified geo-professional familiar with the recommendations of this report prior to commencement for installation of drainage or placement of fill.

Topographic surveys of the stripped surface are to be collected prior to installation of the basal drainage blanket as described in Section 8.4.3.

The proposed fill has a footprint of approximately 43,900m². The average observed topsoil thickness is 0.3m which gives an estimated topsoil volume of approximately 13,000m³. This topsoil volume does not include gully muck-out material and earthworks areas outside of the fill footprint such as the sediment control pond area.

8.4 Drainage

The drainage solutions required to generate the designed stability are discussed in the sections below:

8.4.1 Carrier Drain

A carrier drain is to be installed along the invert of the main watercourse channel. This drain will serve to convey the waterflows typically encountered within the main watercourse. It is anticipated that this drain will continue to relieve groundwater seepages expected from the surrounding subgrade even after the watercourse has been sealed off by the placement of fill.

The anticipated location of the carrier drain is shown in Drawing No.: 2325-23-04 included in Appendix A

The drain is to comprise an approximately 1.2m deep, 0.3m wide trench with three 160mm Φ punched drainage coils arranged with 200mm vertical spacing between the coils. The vertically spaced coil arrangement allows for variable capacity based on the amount of water received at the drain whilst also allowing reserve capacity should sections of an individual drainage pipe become blocked. Care must be taken to ensure that each drainage pipe is bedded into the backfill material and maintains a minimum fall gradient of between 1% and 3% downslope.

The trench is to be backfilled with General All Passing 65mm (GAP65) aggregate with less than 4% fines. Typical grading profiles of the proposed aggregate is to be provided by the contractor for approval by the designer to ensure compatibility. GAP type aggregate has been specified instead of typical drainage aggregate due to the ability of the GAP material to form a self-filtering structure. This mitigates the necessity to use a geotextile separation filter between the drain and the surrounding country. The aggregate material should be un-weathered blue rock.

The typical detail for the carrier drain is shown in Drawing No: 2325-23-102

It is anticipated that the carrier drain will be installed during the muck-out stripping of the gully material. Review of the drains suitability will be confirmed by observing water flows after the farm dam has been released.

The position of the carrier drain is to be as-built surveyed.

8.4.2 Collector Drains

The collector drain is to be installed along the invert of minor watercourses or where soft and/or wet areas are discovered during stripping.

The anticipated locations of collector drains are shown in Drawing No.: 2325-23-04 included in Appendix A. It should be noted that these locations will require confirmation during stripping activities and additional drains may be required where soft/wet areas are located.

The drain is to comprise an approximately 0.6m deep, 0.3m wide trench with a single 160mm Φ punched drainage coil placed. The collector drain is to maintain a minimum fall gradient of between 1% and 3% downslope. Backfill material for the collector drain is to comprise the same GAP material as used in the Carrier Drain discussed in Section 8.4.1.

Collector drains are to be joined into the main carrier drain network at the nearest suitable location and the positions of the drains are to be as-built surveyed.

8.4.3 Basal Drainage Blanket

All fill must be placed on a basal drainage blanket as generally indicated in Drawing No.: 2325-23-04 subject to field confirmation. The basal drainage layers serve to provide a preferential drainage path to convey any seepages from the natural subgrade beneath and excess pore-water from the fill material above to the carrier drain and out of the fill area.

The basal drainage blanket is to comprise a 400mm thick layer of aggregate graded to fall down-slope towards the nearest carrier drain at a minimum gradient of 1% to 3%.

The recommended aggregate is to have a nominal size of All Passing 150mm (AP150) material with less than 4% fines. A typical grading profile is to be provided by the contractor for approval by the designer prior to placing the material.

Minor cuts and fills of less than 1m may be undertaken prior to placing the basal drainage blanket in order to grade localised areas to maintain the minimum gradient of 1% to 3%.

8.4.4 Internal Drainage Blankets

An internal drainage blanket is to be installed every 10m vertical intervals during construction of the fill. The internal drainage blankets are required to relieve pore-water pressure from the fill material as it is placed and also to provide preferential drainage paths for any groundwater that is able to infiltrate into the fill structure.

Internal drainage blankets are to comprise a 400mm thick layer of aggregate that has been graded to fall downslope towards the corresponding structural bund and daylighting along the length of the fill into the bench swale drain. Minimum gradient is to be 1% to 3% towards these swales.

The recommended aggregate is to have a nominal size of All Passing 150mm (AP150) with less than 4% fines. Internal drainage blanket material may comprise moderately weathered material (quarry

grade brown to blue-brown) with less than 4% fines. Contractors are to provide typical grading profile and samples of the nominated material for approval by the designer prior to placing the material.

8.5 Structural Containment Bunds

Prior to bulk placement of managed fill, it will be required to construct a structural containment bund at each level. The structural bund serves two purposes:

- 1) To accurately define the external shape of the fill
- 2) To ensure the designed global stability of the fill.

Due to the incised nature of the central gully in the vicinity of the fill toe, the first bund representing 10m of elevation has a steeper external batter angle of 2H:1V and a top of bund width of 10m. The intermediary benches above adopt a 3H:1V external batter whilst the uppermost bund representing the final stage of the fill has a 4H:1V external batter angle.

Structural bunds are to comprise higher specification material that has been compacted and tested as specified in Section 8.7.1.

Where the structural bund directly overlies a drainage blanket, similar drainage blanket material is to be placed upon the inside batter of the bund. This hydraulically connects the back of the bund to the drainage blanket and ensure water is not trapped behind the structural bund. The drainage blanket material should be stopped approximately 1m vertical from the top of the bund to allow capping material to limit surface water infiltration into the drainage blankets.

The general details and layout of the structural bunds is shown on Drawing No.: 2325-23-101 shown in Appendix A.

8.5.1 Basal Bunds (Stage 1)

The basal bund will need to be constructed to the full dimensions of 10m height and 10m bench width. With external and internal batter angles of 2H:1V 1.5H:1V respectively. The anticipated thickness of the basal bund will be in the order of 70m at the base.

The basal bund will need to be keyed into competent underlying ground. This is to consist of a minimum of 2m undercut from the original ground levels under the basal bund.

It is important that the basal drainage blanket be continued under the basal structural bund and directed to the carrier drain which will daylight downslope of the fill. Drainage blanket material should not extend outside of the bund footprint.

8.5.2 Intermediary & Upper Structural Bunds

In order to minimise the amount of structural fill required (and therefore compaction monitoring) and to provide flexibility to construction program an inter-bench split bund system has been designed. This means that individual structural bunds (excluding the basal bund, see Section 8.5.1) may be 5m high instead of 10m high. This effectively reduces the width of the bund at the base and therefore the amount of structural fill required.

8.5.3 External Benches

The fill has been designed with 5m wide external benches. These benches serve two purposes:

- 1) To allow drainage along swale drains to flume drains at the edges of the fill
- 2) To allow access maintenance machinery to maintain the swale drains and batter faces.

The benches have been designed with a crown to enable water to flow to both the northern and southern flanks of the fill. Benches are also graded with a back-slope towards the inner swale drain to avoid stormwater flowing over the crest of the batter.

The dimensions and details of the swale drain running along the inside edge of the bench will need to be specified by a stormwater design expert and is outside the scope of this report and our work.

8.6 Non-Structural Managed Fill

Material placed behind the structural bunds may comprise non-structural managed fill. This material has a lower specification requirement than those for the structural bund materials.

It is anticipated that this material will consist of imported materials that have been deemed generally unsuitable for other earthworks projects. These materials may include but are not limited to: peat, topsoil and clay materials either too wet or too soft for typical earthworks.

Managed fill materials are considered to be unsuitable for typical testing and fill control regimes. Instead, placement of the managed fill is to be guided by the performance of the material under the passage of the earthmoving plant. Material that is too soft or wet will become difficult to work with earthmoving equipment and should serve as an indication that additional conditioning or blending with drier/stiffer material is required.

8.6.1 "Bottom Up" Filling

As noted in Section 3.3, the upper reaches of each valley are susceptible to slumping type failures. It is therefore recommended that the fills shall be constructed from the toe up. Fill should be transported to the base of the fill area and progressively built up in sub-horizontal layers.

It is not recommended that fill be end-tipped from the head of the gully and pushed down the slopes. Doing so may overload the underlying soils and lead to failure – a potential risk to staff as well as filling progress.

8.6.2 Maximum Managed Fill Gradients During Filling

Manged fill type materials cannot maintain gradients steeper than approximately 1H:6V without exhibiting failure. Manged fill should not be placed at gradients steeper than 1H:6V during filling works.

8.7 Fill Control

Monitoring of the fill placed during construction will be required. The monitoring methodology and specifications have been developed based on two fill classes that will be used for construction of the fill – Structural and Non-Structural Fill. The provided specifications are intended to cover a range of suitable material to aid in ease of testing and construction.

8.7.1 Structural Fill Specifications

It is anticipated that the structural fill will be sourced from concurrent overburden stripping activities at the Huntly Quarry pit and is therefore expected to consist of both Waikato Coal Measures material and residually through moderately weathered Newcastle Group Greywacke. Table 9 and Table 10 presented below provide the testing requirements for structural fill based on cohesive and non-cohesive material respectively

		Criteria and Testing							
Fill Type	Water content (NZS 4402: Test 2.1) Frequency of Testing	Water Content Acceptance Criteria	Pilcon Vane Shear Frequency of Testing	Shear vane Acceptance Criteria (NZGS 2001 Guideline for Hand Held	Maximum Dry Density and Air Void Frequency of Testing	Maximum Dry Density and Air Void Acceptance Criteria (NZS4407 Test 4.2.1)			
Structural Fill	1 test per 500m ³ of source material cut with a min of 2 tests for each area worked each day	± 4% of Optimum Water Content (NZS4402:1986 Test 4.1.1)	1 set (3 points) per 500m3 placed with a min of 2 tests for each area worked each day and no more than every 0.5m thick of fill placed	Avg Su= 135kPa No single value less than 110kPa	1 set (3 points) per 500m3 placed with a min of 2 tests for each area worked each day and no more than every 0.5m thick of fill placed	≤ 8% Air Voids			

Table 0: Com	nantion Contro	l Critorio & Er	oguopov of -	Tooting -	Cohooiyo Motorial
Table 9. Com	paction contro	I UIILEIIA Q FI	equency or	resung –	Cohesive Material

Fill Type	Grading Test Frequency & Acceptance Criteria	Proof Roll Frequency & Acceptance Criteria
Structural Fill	Visual check each day. No particles greater than 200mm. 1 test per 2000m ³ of compacted fill (NZS4402:test 2.8.1) Of particle passing 65mm sieve: - No organic content; and - <4% passing 75µm sieve.	All layers. Visually confirm resultant impression at the surface shall be less than 5mm with a fully loaded ADT (min. 40 Tonne) or a standard axle vehicle (min. 10 Tonne). 1 calibration tests ^[2] per 5,000m ³ of compacted fill and no more than every 1.5m thick of rock fill placed

Table 10: Compaction Control Criteria & Frequency of Testing - Non-Cohesive Fill (Brown Rock)

8.7.2 Non-Structural Managed Fill

Monitoring of the non-structural managed fill component will be limited to performance observations of the fill material. Table 11 below outlines the required proof-roll frequency and acceptance criteria.

Table TT. Compaction Control Cittena & Frequency of Testing - Non-Structural Fill			
Fill Type	Proof Roll Frequency & Acceptance Criteria		

Table 11: Compaction Control Criteria & Frequency of Testing - Non-Structural Fill

Managed Fill	All placed soil fill shall be uniformly spread and track rolled by a bulldozer. The bulldozer should be able to track easily across the surface without sinking into the material. Material that is untrafficable by the bulldozer should be conditioned or blended before additional layers are spread.

8.7.3 Fill Testing Requirements

All laboratory, shear vane and nuclear densometer testing is to be carried out by an IANZ approved laboratory. The position of each test should be recorded by GPS with a minimum of ±4m accuracy in plan and 0.2m in elevation.

Test failures within structural fill material should be relayed back to the contractor immediately. The failed area must be re-tested once the contractor rectifies the reason for failure.

Control of the non-structural managed fill should be undertaken by the contractor with spot-checks undertaken by a geo-professional familiar with the contents of this report or when requested by the contractor. Material that is too wet and/or soft for trafficking by the bulldozer should either be conditioned or blended with drier material. Due to the expected variability in the material being imported into the site, management of fill moisture levels and trafficability should be carefully monitored by the contractor. Failure to do so may result in areas of managed fill that are untrafficable and consequently losing the ability to place more managed fill until the underlying material is rectified.

8.8 Displacement Monitoring

Displacement monitoring of the fill will be required during construction and after completion of the fill. Successive monitoring points should be established at each bench level with additional monitoring points installed on the finished surface. The monitoring points nominally consist of a waratah fencing standard driven into the fill that can be checked periodically by a surveyor.

A monitoring point layout plan and typical detail is included in Appendix A, Drawing No.: 2325-23-103

The monitoring frequency and alert trigger levels are presented in Table 12 below:

Monitoring Point Type	Monitoring Frequency	Alert Trigger Level
Survey Monitoring Point – Steel Waratah Fencing Standard	Monthly. Increase to weekly if alert trigger level is exceeded	100mm net lateral displacement of structural fill 100mm net vertical displacement of structural fill
Notes:	1) The alert levels may be revised during construction in response to observed displacements	

Table 12: Displacement Monitoring Frequency and Alert Trigger Levels

8.8.1 Pore-Water Pressure monitoring

Due to the installation of regularly spaced drainage blankets and fill placement monitoring which includes control of the fill material water content, we are of the opinion that standpipe piezometers are not required unless displacement monitoring alert triggers are exceeded.

If displacements and/or settlements exceed the alert trigger levels during the displacement monitoring recommended in Section 8.8, the installation of standpipe piezometers or similar within the fill will be required in order to monitor the pore-water pressure conditions.

Location and details of these piezometers will be determined by the supervising geotechnical engineer upon review of the displacement data.

8.8.2 Excess Displacement Mitigation Response

Response to excess displacement will be determined based on the mechanism inferred to be driving the displacement.

If excessive pore-pressure is discovered following installation of the standpipe piezometers as mentioned in Section 8.8.1 mitigation options will include removal of the fill material generating the excess pore-pressure if practical to do so. Otherwise, bored sub-horizontal drains will be required to relieve excess pore-water pressures.

If excessive displacement is determined to not be a result of excess pore-pressure, the excessive fill material which caused the excessive deformation will be removed in order to reduce the downslope driving force and improve the stability. This avoids overly conservative design of the fill slope. This is to be determined based on the monitoring results.

9 Conclusions

This geotechnical design report covers the detailed investigation and design of Fill Site 2 undertaken by Gaia Engineers as part of the Huntly Quarry Fill Disposal Areas project.

The toe of proposed fill begins at RL 50 and the fill rises to RL 115. External benches will be placed at 10m vertical intervals and will be 5m wide allowing for bench level drainage and maintenance access. External batter angles will be controlled by the construction of structural bunds. The lowest bund representing the first 10m of elevation will have external batters of 2H:1V in order for the fill to climb out of the steeply incised portion of the gully. Above the first bench, external batter gradients will transition into 3H:1V with the final external bund being 4H:1V.

Based on the results of the existing information review, test pit investigation, fill design and stability analysis undertaken in preparation of this report, we are satisfied that the proposed fill will be sufficiently stable. Stability of the fill is reliant on the correct implementation of the design including installation of the drainage blankets, control of external batter angles and adherence to the appropriate fill specifications.

Detailed construction recommendations and methodology is provided in Section 8

All referenced drawings are included in Appendix A

Site investigation logs are included in Appendix B

Outputs for slope stability calculations are included in Appendix C

10 Limitations

10.1 Specific Limitations

Design aspects relating to stormwater handling including but not limited to: swale drains, flumes, sediment ponds are outside of the scope of this report and our work. These structures should be specifically designed by a stormwater expert familiar with this report.

10.2 General Limitations

This report is the property of our client – Gleeson Quarries Ltd.

The factual logs presenting descriptions of the soils and geology based on our observations of the samples recovered in the fieldwork and may not be truly representative of the underlying ground conditions.

To the maximum extent permitted by law, Gaia Engineers Ltd disclaims all liability and responsibility (in

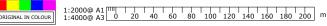
contract or tort, including negligence, or otherwise) for any loss or damage whatsoever which may be suffered as a result of any reliance by any third party on this report, whether that loss is caused by any fault or negligence on the part of Gaia Engineers Ltd or otherwise.

Our interpretation of the geotechnical information is based on field investigations at discrete locations. Therefore, variation of ground conditions away from the investigations can be expected. No guarantee is

expressed or implied as to the nature of the ground conditions between or beyond investigation conditions. This report covers the Fill Disposal Site 5 at the Huntly Quarry as described within and does not make any conclusion or recommendations regarding any other aspects of the quarry.

11 Risk and Mitigation

Table 13: Key Geotechnical Risk and Mitigation Strategy

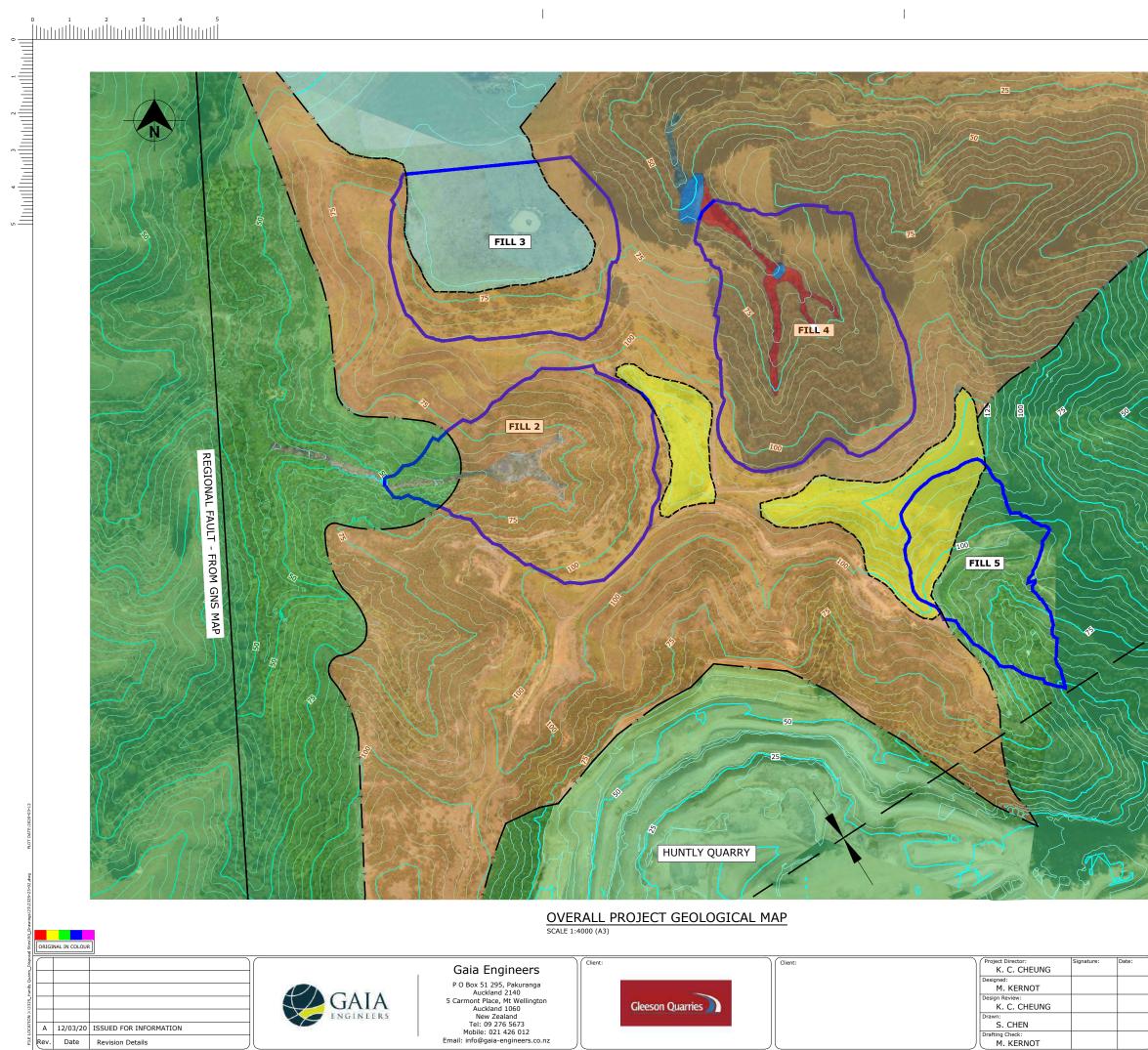

Likely Risk	Mitigation Strategy
Ground Conditions: Position of Geological/Geotechnical Unit boundaries differs from design. Worse conditions than those designed for could lead to slope instability Presence of Bedding Parallel Shears and Weaknesses within the Waikato Coal Measures are encountered	Specific design of toe-keys to cut-off bedding parallel weaknesses. No permanent cuts that daylight bedding parallel weaknesses.
Groundwater Conditions: Groundwater table is higher than observed and/or groundwater springs are encountered.	Sufficient contingency in construction budget for additional drainage measures.
Land Slips: Slips within the weathered soils of the existing valleys during construction	Avoidance of placing undue load on the natural soil slopes by not end-tipping material from the gully head. Maintaining positive drainage across all active earthworks sites and shaping of finished ground. Not directing catchment stormwater flows onto active earthworks areas and conveying water to a safe discharge point
Displacement Monitoring: Excessive Fill Displacements Measured	Install stand-pipe piezometers to monitor pore-water pressures Installation of sub-horizontal bored drains Remove material causing deformation and replace with compacted hard-fill or soft-pit-run
Seismically induced displacement: Displacement causing sloughing of material from external batters	Reinstate drainage capacity of swale drains if blocked by slip material Remove remnant displaced material and replace with compacted structural fill.

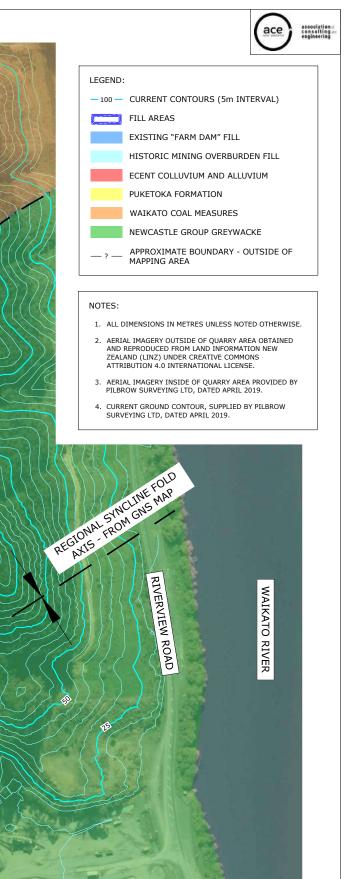
A Safety in Design matrix is included in Appendix D. It is anticipated that prior to construction the document will be finalised with the contractor.

APPENDIX A – Design Drawings

DRAWING NO:	DRAWING TITLE:	REVISION:
2325-23-01	OVERALL PROJECT LAYOUT WITH CURRENT CONTOURS	А
2325-23-02	OVERALL PROJECT GEOLOGICAL MAP	А
2325-23-03	PROPOSED FILL SITE 2 FINAL SURFACE AND DRAINAGE	В
2325-23-04	MUUCKOUT AREA AND UNDERFILL DRAINAGE PLAN	А
2325-23-10	STAGE 1 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-11	STAGE 2.1 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	А
2325-23-12	STAGE 2.2 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-13	STAGE 3.1 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	А
2325-23-14	STAGE 3.2 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-15	STAGE 4.1 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-16	STAGE 4.2 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-17	STAGE 5.1 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-18	STAGE 5.2 LAYOUT – BUND AND MANAGED FILL ARRANGEMENT	В
2325-23-50	GEOLOGICAL AND PROPOSED FILL SECTION 01	А
2325-23-51	GEOLOGICAL AND PROPOSED FILL SECTION 02	А
2325-23-52	GEOLOGICAL AND PROPOSED FILL SECTION 03	А
2325-23-101	TYPICAL BUND AND MANAGED FILL – ARRANGEMENT AND DETAIL	В
2325-23-102	TYPICAL DRAINAGE DETAILS	А
2325-23-103	DISPLACEMENT MONITORING LAYOUT	В

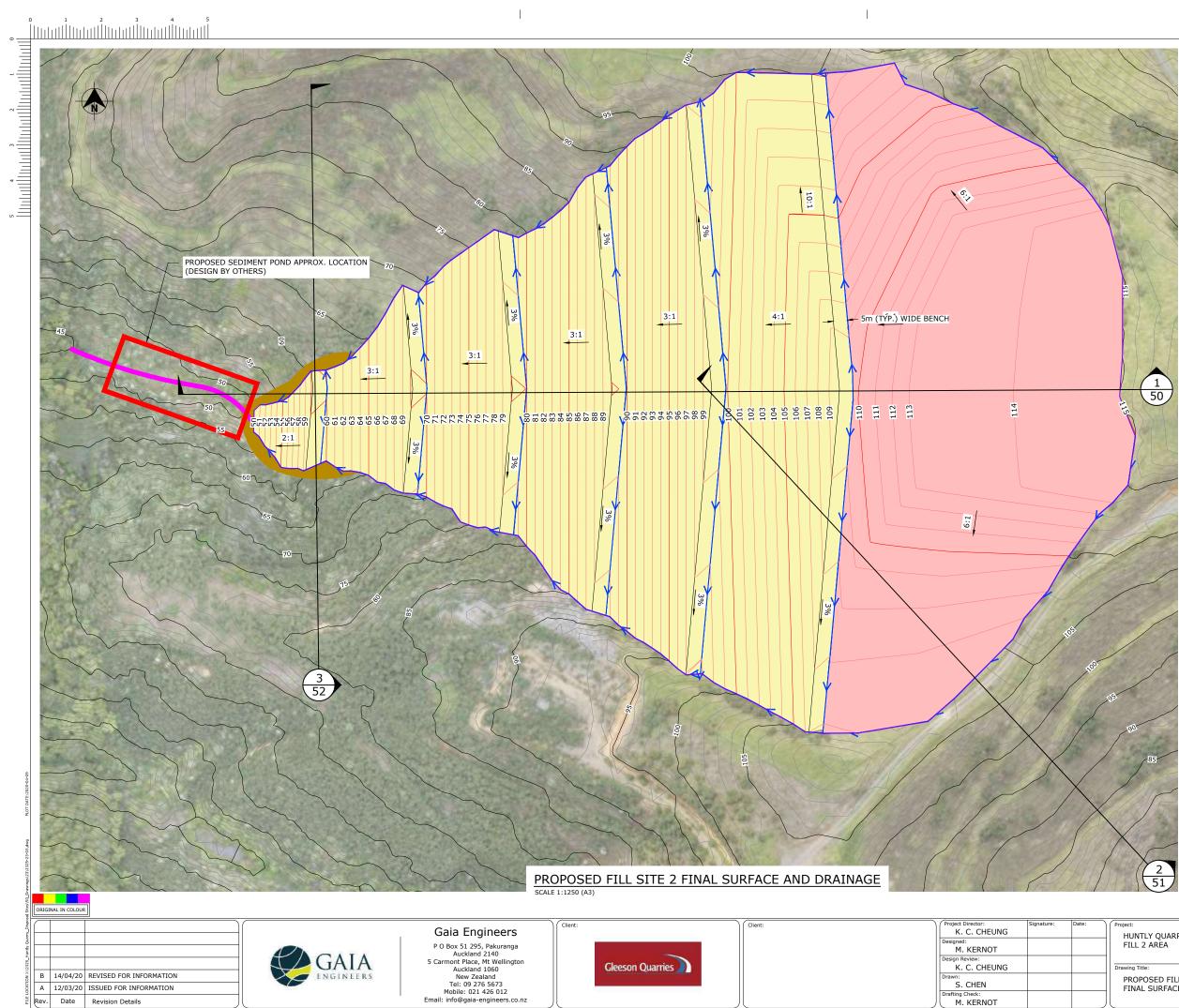
Gaia Engineers P O Box 51 295, Pakuranga Auckland 2140 5 Carmont Place, Mt Wellington Auckland 106 New Zealand Tel: 09 276 5673 Mobile: 021 426 012 Email: info@gaia-engineers.co.nz Client Gleeson Quarries


Project Director: K. C. CHEUNG	Signature:	Date:
Designed: M. KERNOT		
Design Review: K. C. CHEUNG		
Drawn: S. CHEN		
Drafting Check: M. KERNOT		


Document Set ID: 3490860 Version: 1, Version Date: 14/04/2022

A 12/03/20 ISSUED FOR INFORMATION Rev. Date Revision Details

LEGEND	:
100	- CURRENT CONTOURS (5m INTERVAL)
	FILL 2 AREA
	FILL 3 AREA
	FILL 4 AREA
	FILL 5 AREA
	TEST PIT (TP)
•	BOREHOLE (HQ)


	INFORMATION
Project: HUNTLY QUARRY DISPOSAL SITES FILL 2 AREA	Project No. 2325/23
Drawing Title: OVERALL PROJECT LAYOUT WITH CURRENT CONTOURS	Scale: AS SHOWN ORIGINAL SHEET SIZE: A3 Drawing No. 2325-23-01 A

Document Set ID: 3490860 Version: 1, Version Date: 14/04/2022

	INFORMATION
Project: HUNTLY QUARRY DISPOSAL SITES FILL 2 AREA	Project No. 2325/23 Scale:
Drawing Title:	AS SHOWN ORIGINAL SHEET SIZE: A3
	2325-23-02 A

M. KERNOT

Gleeson Quarries

B 14/04/20 REVISED FOR INFORMATION A 12/03/20 ISSUED FOR INFORMATION

ENGINEERS

	ace espinering
LEGEND:	
100	EXISTING CONTOURS (1m INTERVAL)
<u> </u>	PROPOSED FILL CONTOURS (1m INTERVAL)
	STRUCTURAL FILL (BUND)
	MANAGED FILL (NON STRUCTURAL FILL)
	UNDERCUT
	WATER FLOW DIRECTION
	CARRIER DRAINS

NOTES:

- 1. ALL DIMENSIONS IN METRES UNLESS NOTED OTHERWISE.
- AERIAL IMAGERY OUTSIDE OF QUARRY AREA OBTAINED AND REPRODUCED FROM LAND INFORMATION NEW ZEALAND (LINZ) UNDER CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
- 3. AERIAL IMAGERY INSIDE OF QUARRY AREA PROVIDED BY PILBROW SURVEYING LTD, DATED APRIL 2019.
- 4. CURRENT GROUND CONTOUR, SUPPLIED BY PILBROW SURVEYING LTD, DATED APRIL 2019.
- 5. COORDINATED DATUM:NZGD 2000 MOUNT EDEN CIRCUIT.
- 6. MUCKOUT OF ENTIRE STAGE 1 GENERAL FILL FOOTPRINT TO BE COMPLETED TO THE SATISFACTION OF THE INSPECTING ENGINEER.
- 7. COLLECTOR DRAINS TO BE INSTALLED IN DEPRESSIONS AND SEEPAGE LOCATIONS AND TO BE CONFIRMED ON SITE BY THE ENGINEER.
- 8. ALL SWALE DRAINS, SCOUR PROTECTION AND OUTLET CHANNEL TO BE DESIGN AND SPECIFIED BY STORMWATER DESIGN SPECIALIST.

VOLUME:	
SITE AREA	45,290 m²
ESTIMATED TOPSOIL STRIPPING	13,580 m ³
DRAINAGE BLANKET	25,635 m³
STRUCTURAL FILL (BUND)	113,090 m ³
MANAGED FILL	577,915 m ³
TOTAL FILL MATERIAL	716,640 m ³

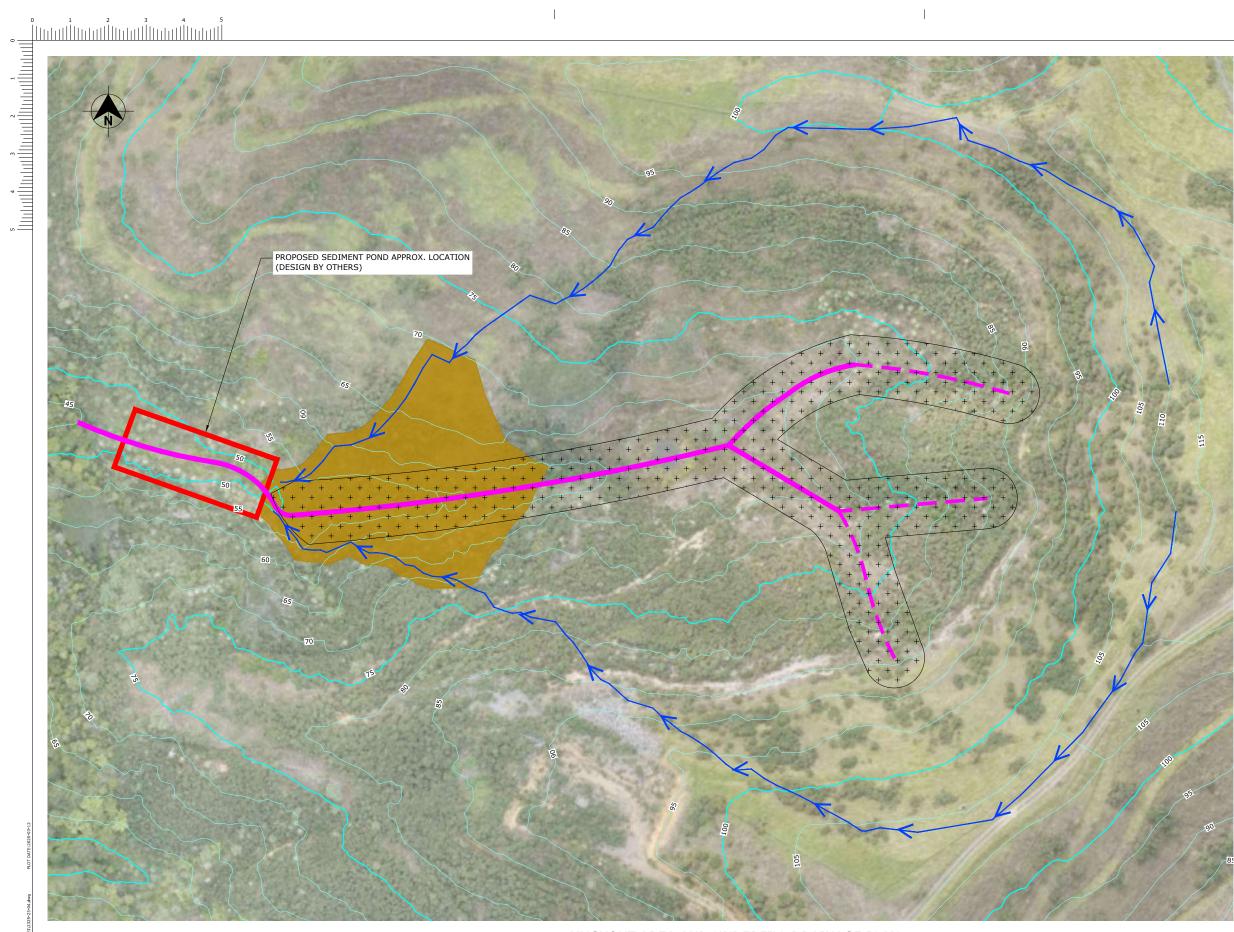
HUNTLY QUARRY DISPOSAL SITES FILL 2 AREA	

rawing	Title:

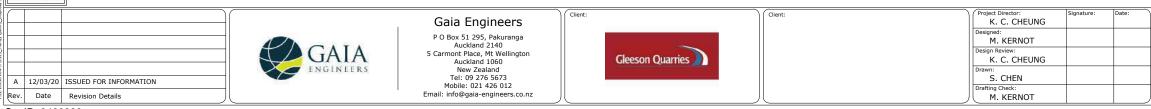
K. C. CHEUNG

S. CHEN

M. KERNOT


PROPOSED FILL SITE 2 FINAL SURFACE AND DRAINAGE

INFORMATION	J


2325/23

AS SHOWN ORIGINAL SHEET SIZE: A3 rawing No В

2325-23-03

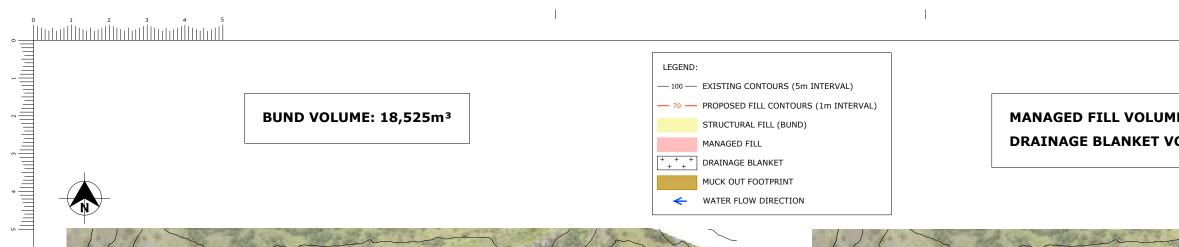
MUCKOUT AREA AND UNDERFILL DRAINAGE PLAN SCALE 1:1250 (A3)

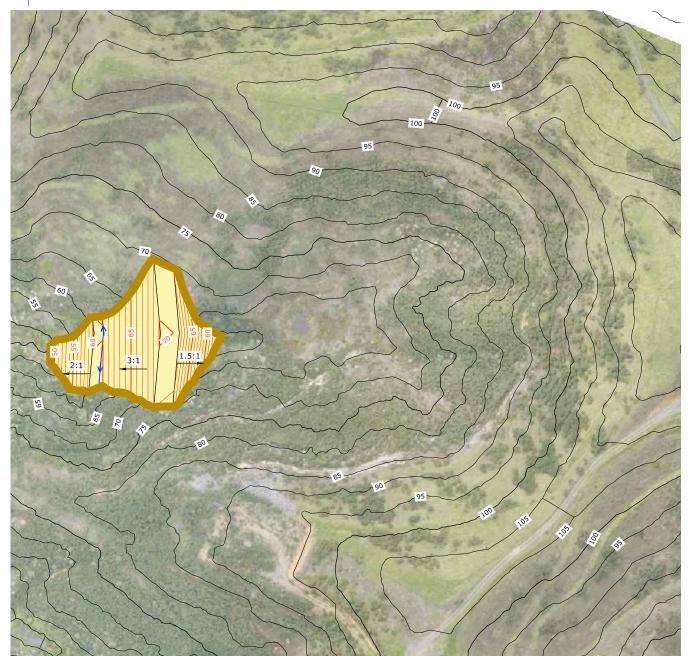
Document Set ID: 3490860 Version: 1, Version Date: 14/04/2022

\sim
LEGEND:
— 120 — EXISTING CONTOURS (5m INTERVAL)
+ + + DRAINAGE BLANKET
UNDERCUT FOR TOE KEY
SWALE DRAINS & WATER FLOW DIRECTION (DESIGN BY OTHERS, REFER NOTE 7)
CARRIER DRAINS
- COLLECTOR DRAINS

ace essociation consulting engineering

NOTES:

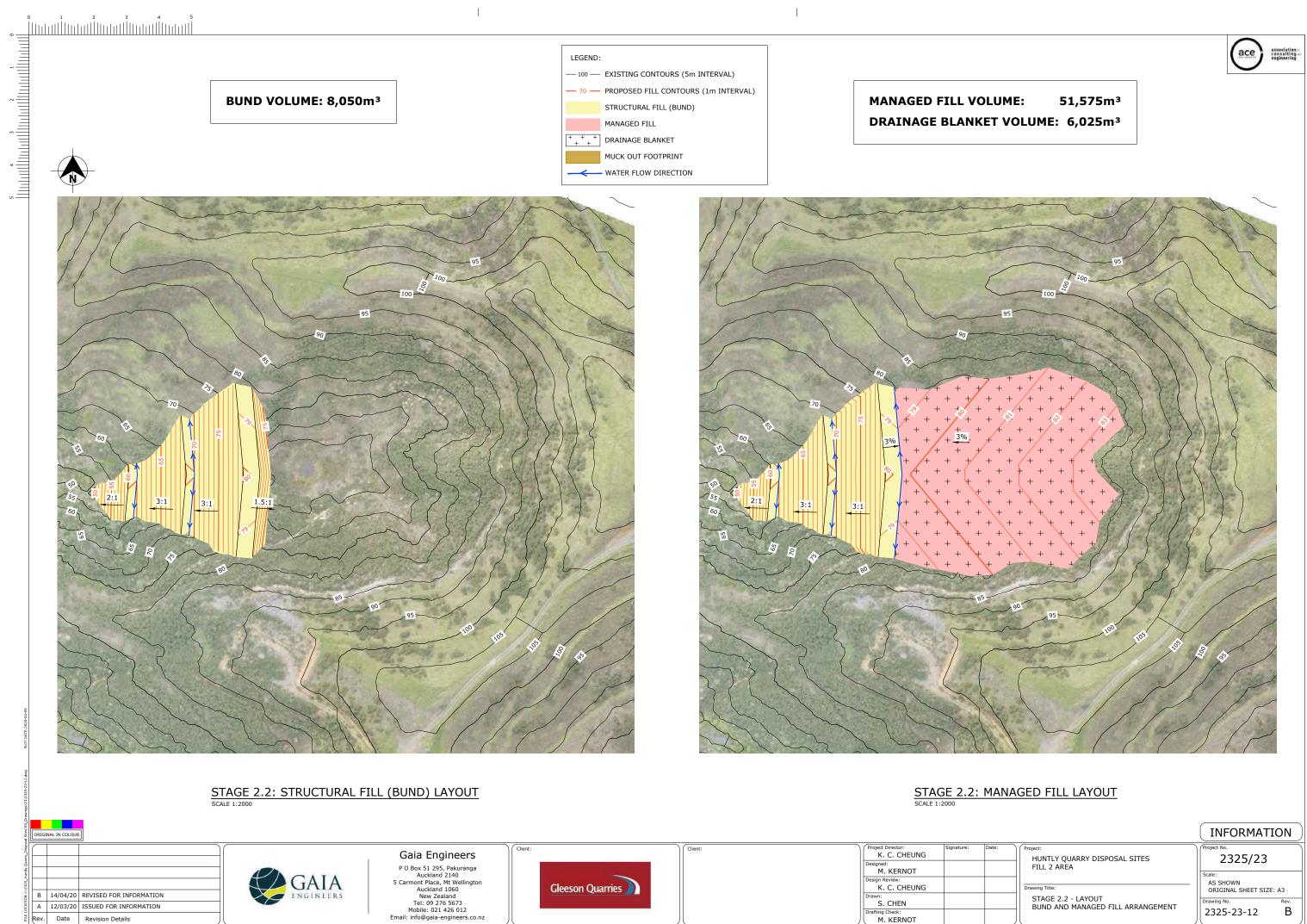

- 1. ALL DIMENSIONS IN METRES UNLESS NOTED OTHERWISE.
- 2. AERIAL IMAGERY OUTSIDE OF QUARRY AREA OBTAINED AND REPRODUCED FROM LAND INFORMATION NEW ZEALAND (LINZ) UNDER CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
- 3. AERIAL IMAGERY INSIDE OF QUARRY AREA PROVIDED BY PILBROW SURVEYING LTD, DATED APRIL 2019.
- 4. CURRENT GROUND CONTOUR, SUPPLIED BY PILBROW SURVEYING LTD, DATED APRIL 2019.
- 5. COORDINATED DATUM:NZGD 2000 MOUNT EDEN CIRCUIT.
- 6. MUCKOUT OF ENTIRE STAGE 1 GENERAL FILL FOOTPRINT TO BE COMPLETED TO THE SATISFACTION OF THE INSPECTING ENGINEER.
- 7. COLLECTOR DRAINS TO BE INSTALLED IN DEPRESSIONS AND SEEPAGE LOCATIONS AND TO BE CONFIRMED ON SITE BY THE ENGINEER.
- 8. ALL SWALE DRAINS, SCOUR PROTECTION AND OUTLET CHANNEL TO BE DESIGN AND SPECIFIED BY STORMWATER DESIGN SPECIALIST.

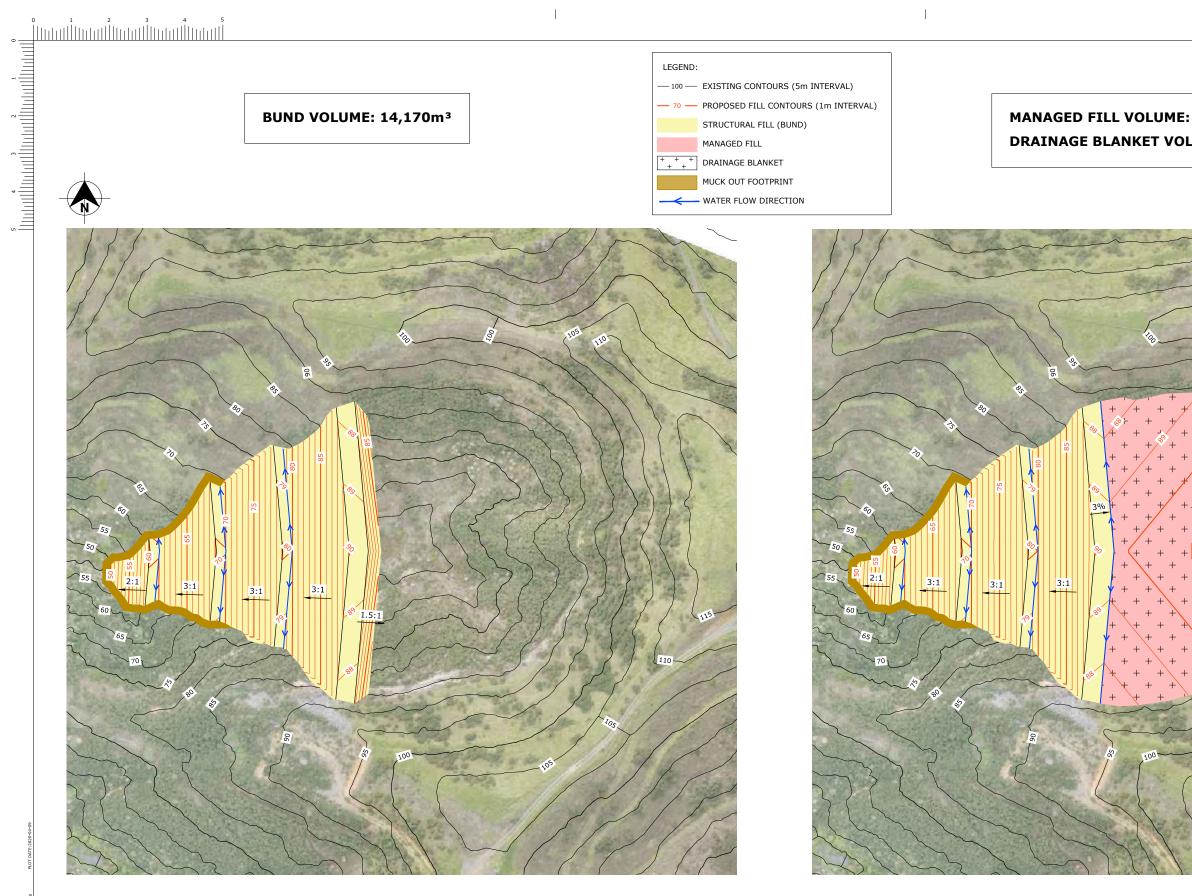

HUNTLY QUARRY DISPOSAL SITES FILL 2 AREA 2325/23 wing Title

MUCKOUT AREA AND UNDERFILL DRAINAGE PLAN

Scale:	
AS SHOWN	
ORIGINAL SHEET SIZE	: A3
Drawing No.	Rev.
2325-23-04	Α

INFORMATION





P O Box 51 295, Pakuranga Auckland 2140 5 Carmont Place, Mt Wellington Auckland 1060 New Zealand Tel: 09 276 5673 Mobile: 021 426 012 Email: info@gaia-engineers.co.nz

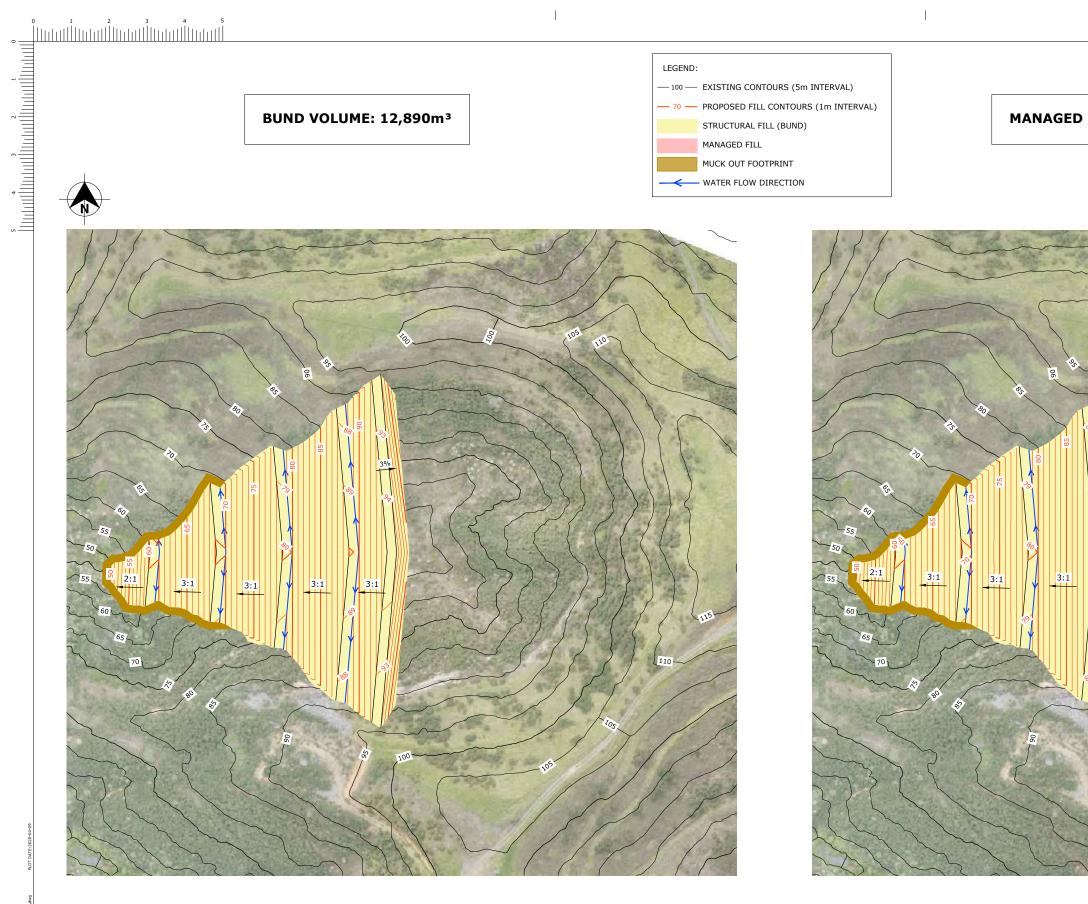
)	Project Director:	Signature:	Date:
	K. C. CHEUNG		
	Designed:		
	M. KERNOT		
	Design Review:		
	K. C. CHEUNG		
	Drawn:		
	S. CHEN		
	Drafting Check:		
)	M. KERNOT		

INAL IN COL B 14/04/20 REVISED FOR INFORMATION

A 12/03/20 ISSUED FOR INFORMATION

SCALE 1:2000

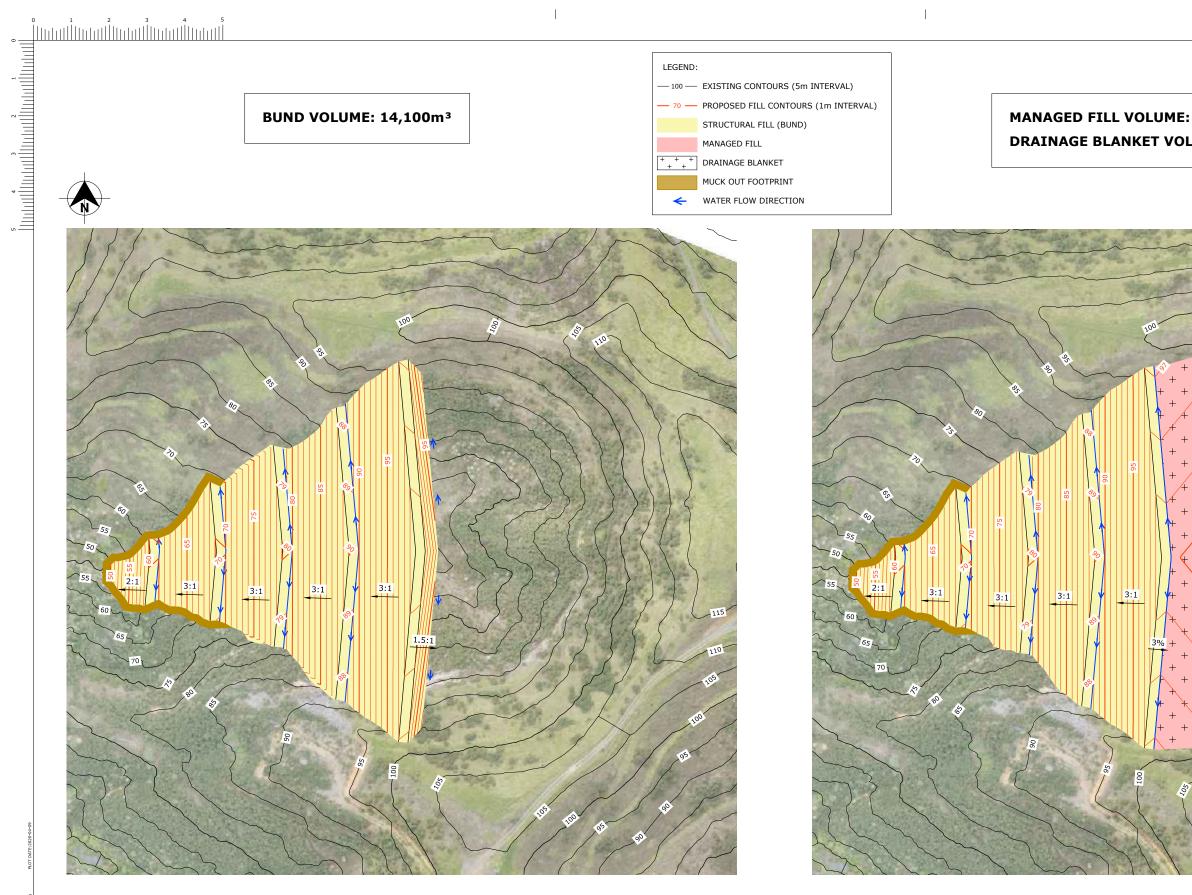

STAGE 3.2: STRUCTURAL FILL (BUND) LAYOUT


Gaia Engineers P O Box 51 295, Pakuranga Auckland 2140 5 Carmont Place, Mt Wellington Auckland 1060 New Zealand Tel: 09 276 5673 Mobile: 021 426 012 Email: info@gaia-engineers.co.nz

	Project Director: K. C. CHEUNG	Signature:	Date:
	Designed: M. KERNOT		
	Design Review: K. C. CHEUNG		
	Drawn: S. CHEN		
J	Drafting Check: M. KERNOT		

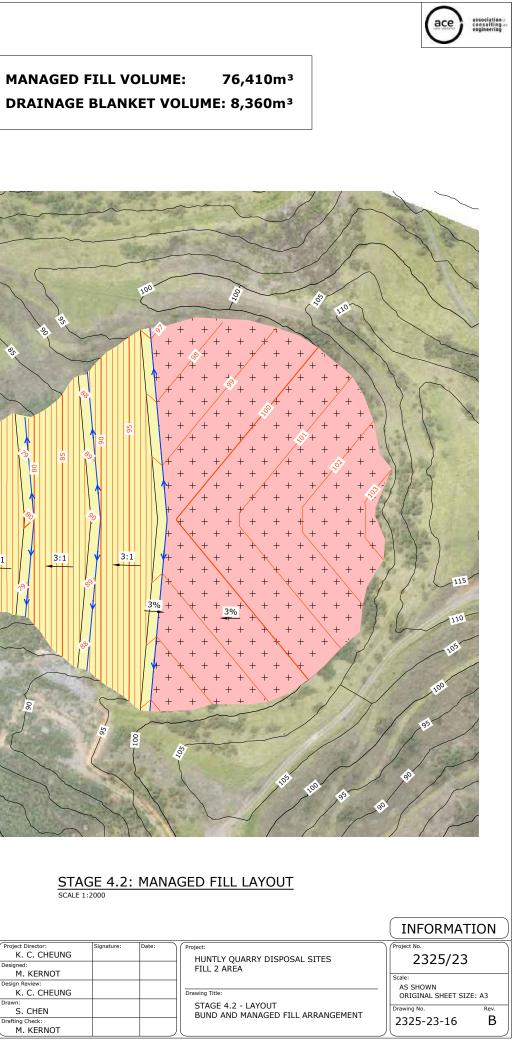
1

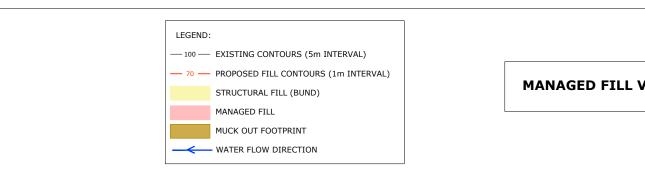

Gaia Engineers

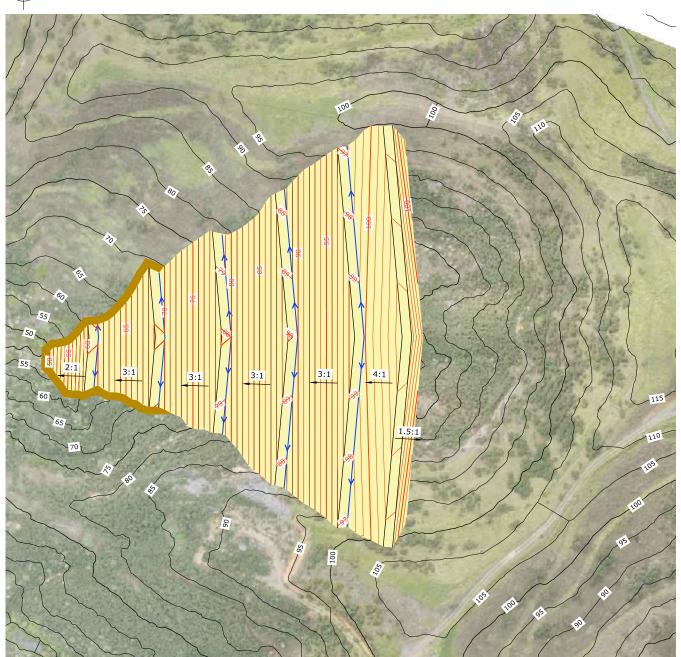


-06	56	100
STAC	GE 4.1:	MANA
SCALE 1		
Project Director: K. C. CHEUNG Designed: M. KERNOT Design Review:	Signature:	Date:

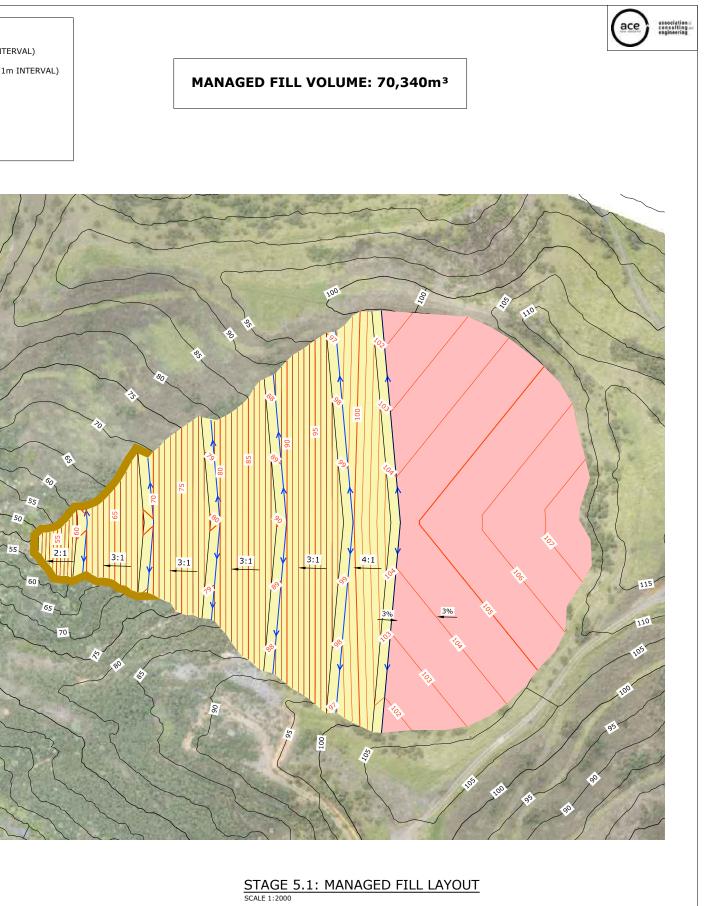
Document Set ID: 3490860 Version: 1, Version Date: 14/04/2022


INAL IN COL



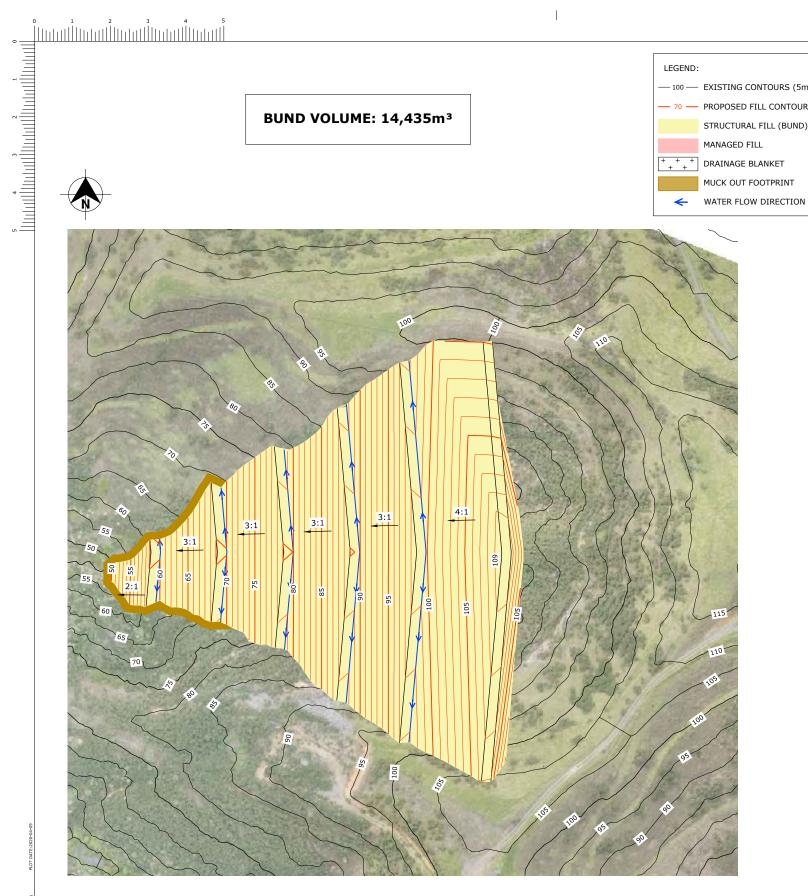


Version: 1, Version Date: 14/04/2022

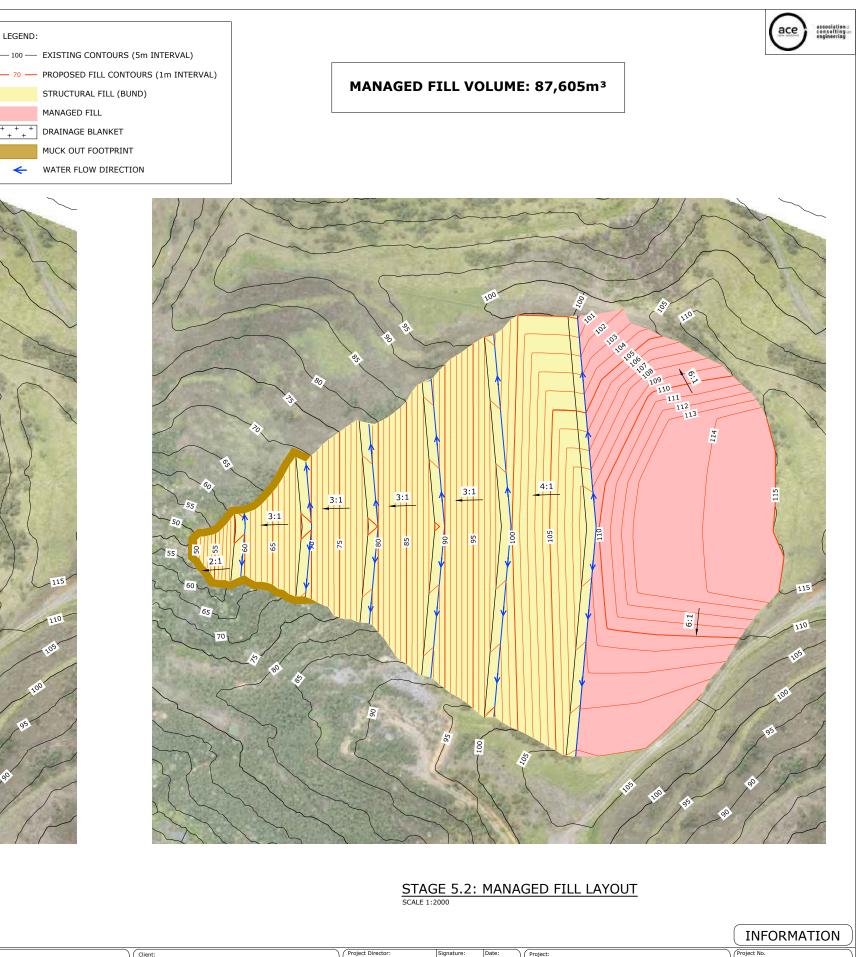


STAGE 5.1: STRUCTURAL FILL (BUND) LAYOUT

BUND VOLUME: 15,640m³

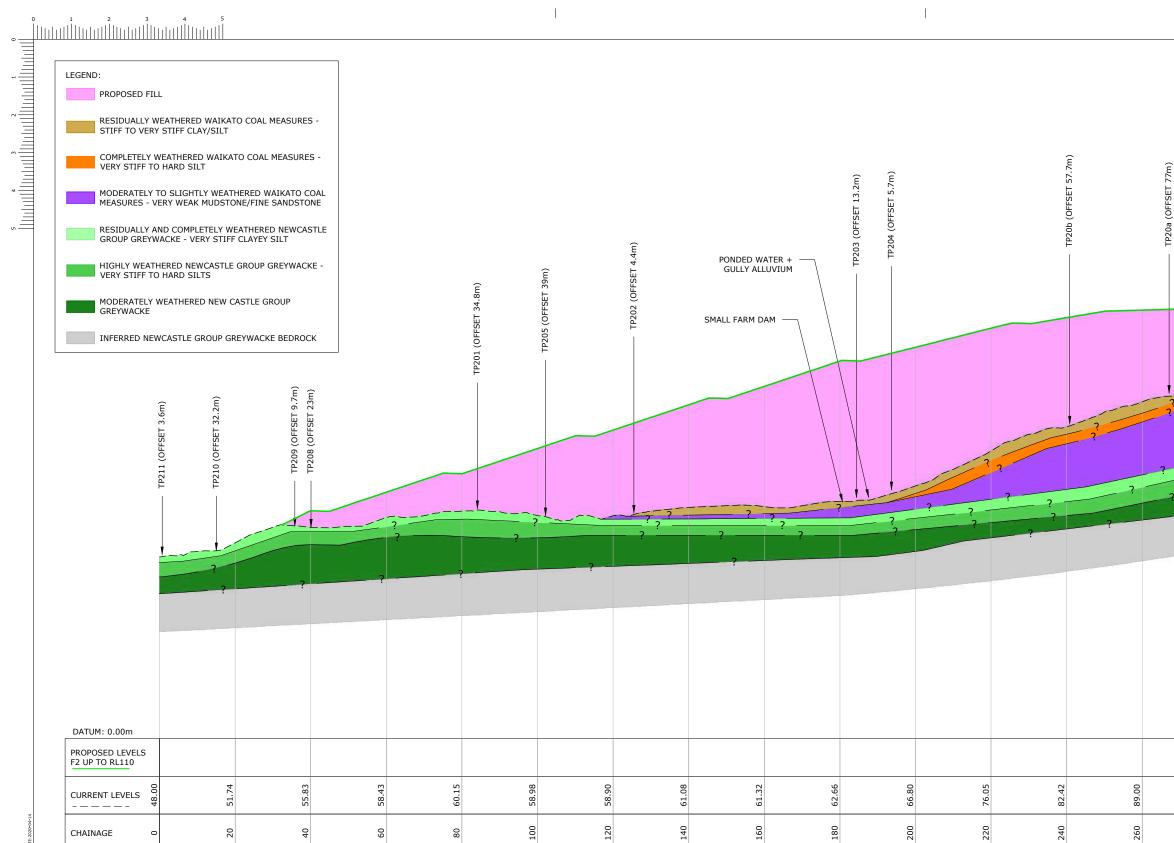


	(INFORMATION)
Project: HUNTLY QUARRY DISPOSAL SITES FILL 2 AREA	Project No. 2325/23
Drawing Title: STAGE 5.1 - LAYOUT BUND AND MANAGED FILL ARRANGEMENT	Scale: AS SHOWN ORIGINAL SHEET SIZE: A3 Drawing No. Rev. 2325-23-17 B


STRUCTURAL FILL (BUND)

LEGEND:

BUND VOLUME: 14,435m³



al Site	ORIGIN	NAL IN COLOUR	2								
my_Dispos	\square				Gaia Engineers	Client:	Client:	Project Director: K. C. CHEUNG	Signature:	Date:	
Huntly Qua				PACATA	P O Box 51 295, Pakuranga Auckland 2140	· · · · · · · · · · · · · · · · · · ·		Designed: M. KERNOT Design Review:			
ON J:\2325	в	14/04/20	REVISED FOR INFORMATION	GAIA	5 Carmont Place, Mt Wellington Auckland 1060 New Zealand	Gleeson Quarries		K. C. CHEUNG			_
OCATI	А	12/03/20	ISSUED FOR INFORMATION		Tel: 09 276 5673 Mobile: 021 426 012			S. CHEN Drafting Check:			4
FILE I	Rev.	Date	Revision Details	'	Email: info@gaia-engineers.co.nz		儿	M. KERNOT			J
	0	D 0400	2000								

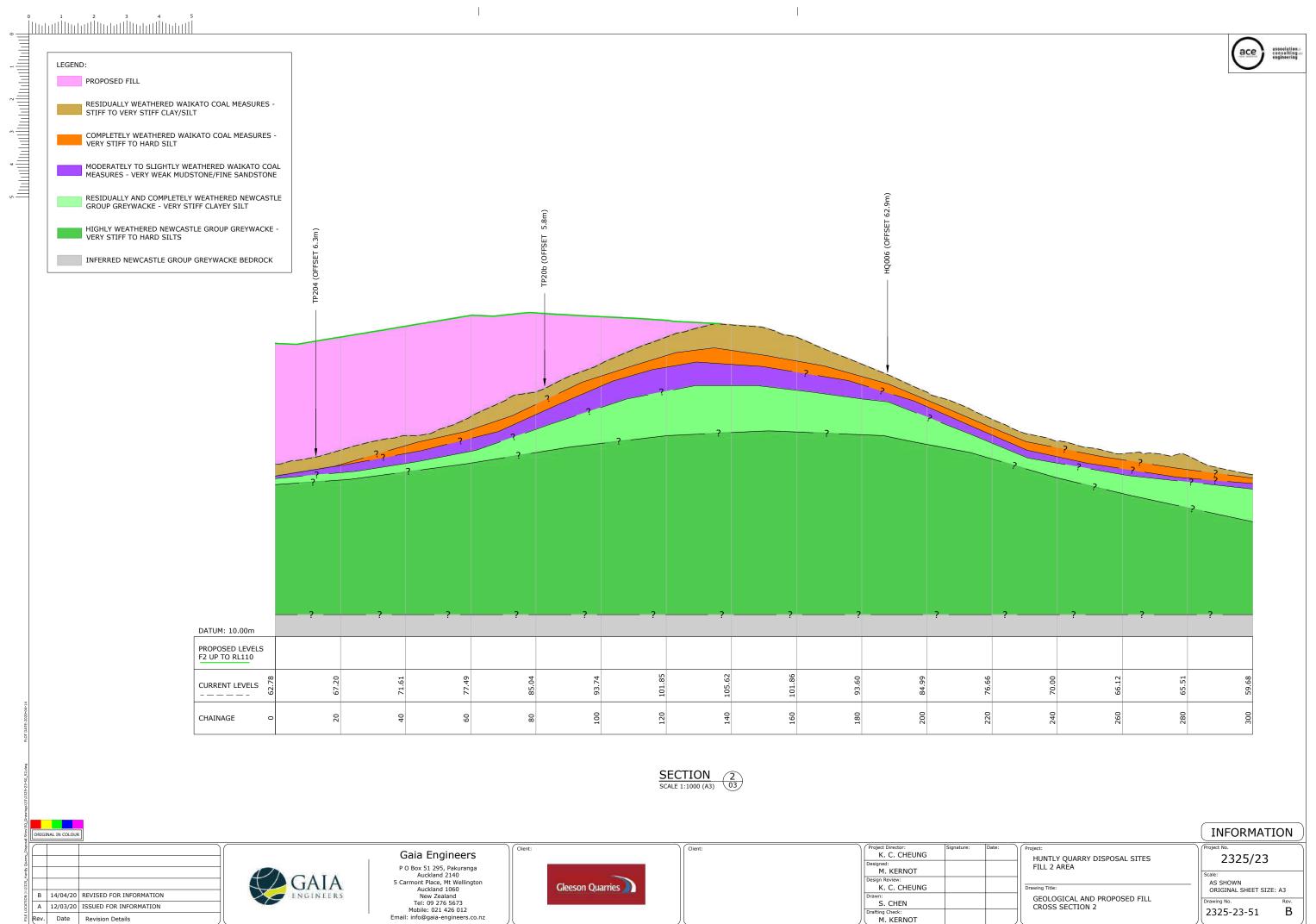
Document Set ID: 3490860 Version: 1, Version Date: 14/04/2022

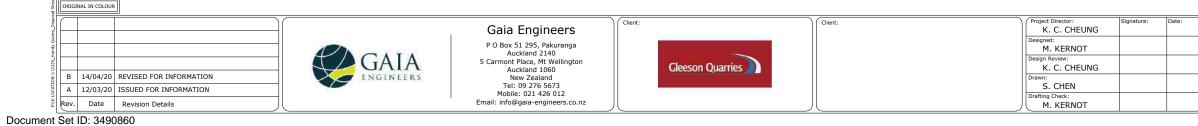
HUNTLY QUARRY DISPOSAL SITES	2325/23
Drawing Title:	^{cale:} AS SHOWN ORIGINAL SHEET SIZE: A3
BUND AND MANAGED FILL ARRANGEMENT	rawing No. Rev. 2325-23-18 B

ORIGINAL IN COLOU

Gaia Engineers P O Box 51 295, Pakuranga Auckland 2140 5 Carmont Place, Mt Wellington Auckland 106 New Zealand Tel: 09 276 5673 Mobile: 021 426 012 Email: info@gala-engineers.co.nz

SCALE 1:1000 (A3) SECTION

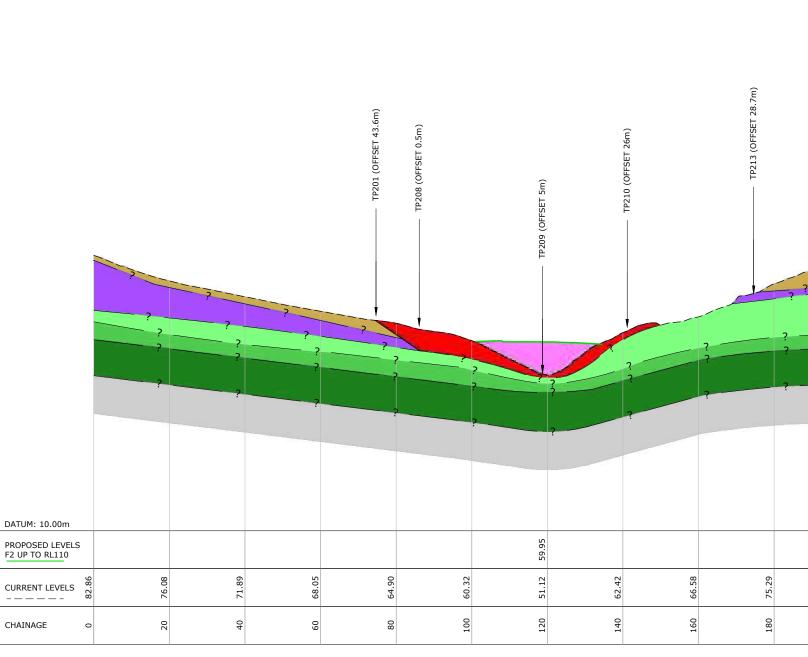

	Project Director: K. C. CHEUNG	Signature:	Date:
	Designed:		
	M. KERNOT		
	Design Review: K. C. CHEUNG		
	Drawn: S. CHEN		
)	Drafting Check: M. KERNOT		


Document Set ID: 3490860 Version: 1, Version Date: 14/04/2022

B 14/04/20 REVISED FOR INFORMATION A 12/03/20 ISSUED FOR INFORMATION

Rev. Date Revision Details

						iociation // nsuiting // jineering :
	2.5	2	;	5 5 5		
?	- 2 - 3	3		3		
95.97	104.50	113.51		117.92	119.71	
280	300	320		340	350	
Drawing Tit	TLY QUARRY DISPO 2 AREA de: OGICAL AND PROP 55 SECTION 1			INFOR Project No. 2322 Scale: AS SHOWN ORIGINAL SI Drawling No. 2325-23	5/23 HEET SIZE:	



Version: 1, Version Date: 14/04/2022

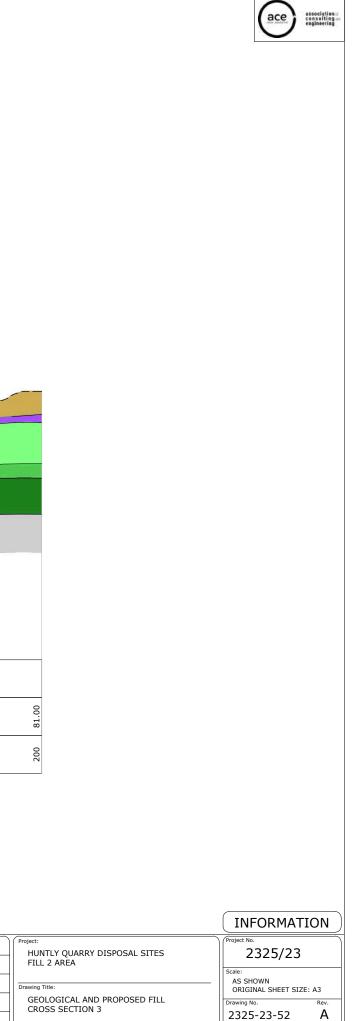
-	LEGEND:
	PROPOSED FILL
	RECENT COLLUVIUM AND ALLUVIUM - SOFT TO FIRM CLAY WITH VARYING ORGANIC CONTENT
» ۱۱۱۱۱۱۱	RESIDUALLY WEATHERED WAIKATO COAL MEASURES - STIFF TO VERY STIFF CLAY/SILT
4	MODERATELY TO SLIGHTLY WEATHERED WAIKATO COAL MEASURES - VERY WEAK MUDSTONE/FINE SANDSTONE
در 	RESIDUALLY AND COMPLETELY WEATHERED NEWCASTLE GROUP GREYWACKE - VERY STIFF CLAYEY SILT
	HIGHLY WEATHERED NEWCASTLE GROUP GREYWACKE - VERY STIFF TO HARD SILTS
	MODERATELY WEATHERED NEW CASTLE GROUP GREYWACKE

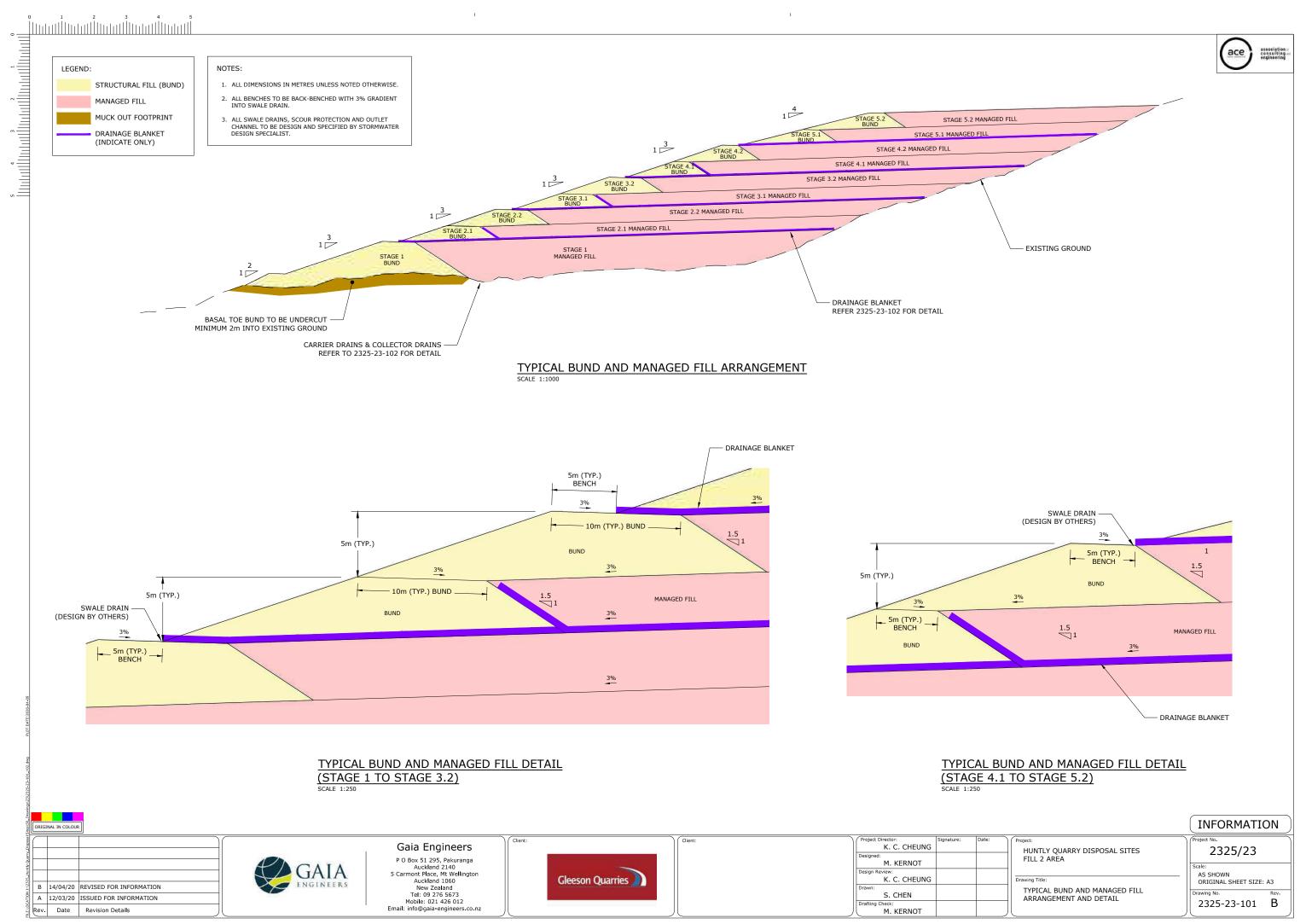
INFERRED NEWCASTLE GROUP GREYWACKE BEDROCK

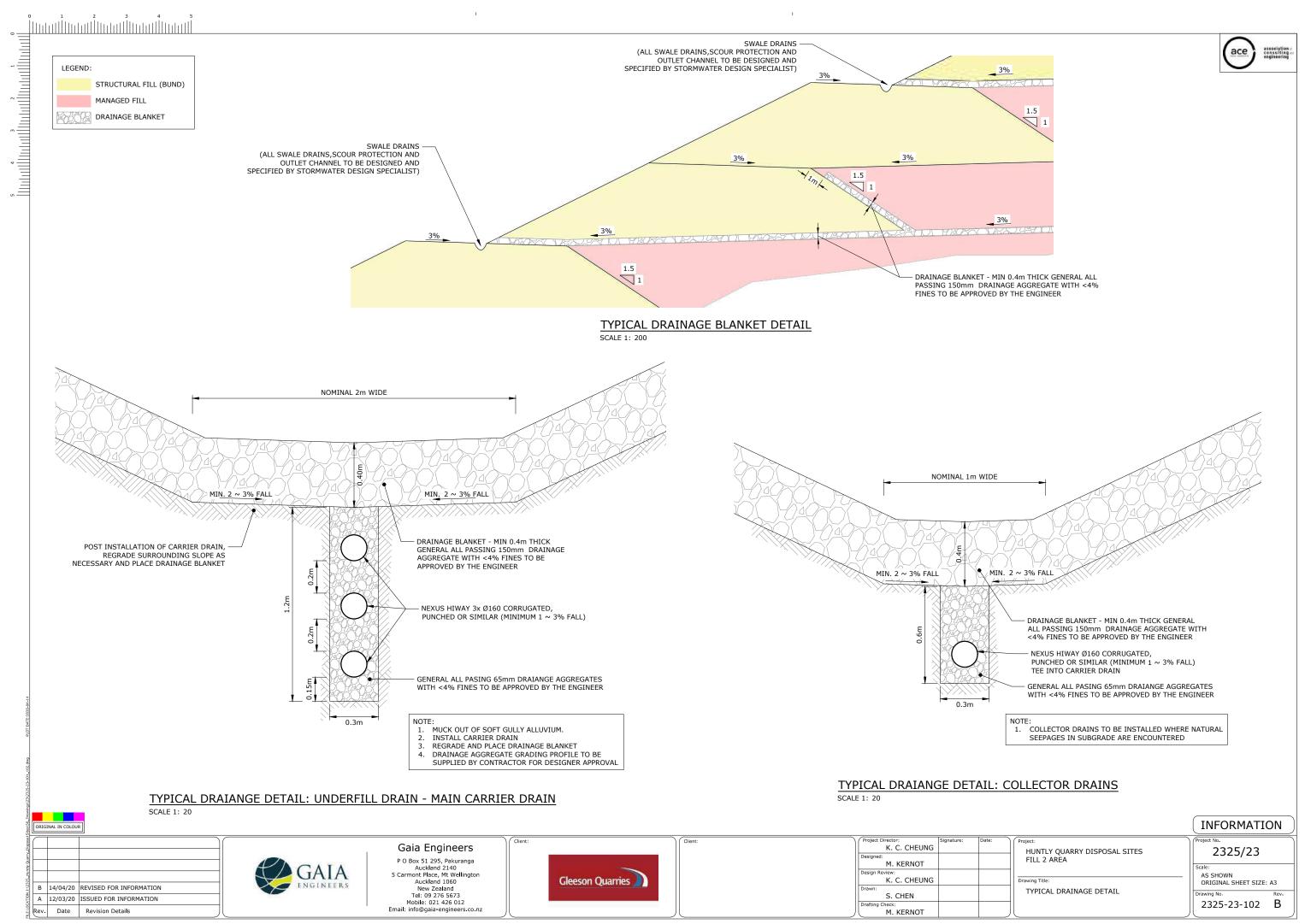
SCALE 1:1000 (A3)

3

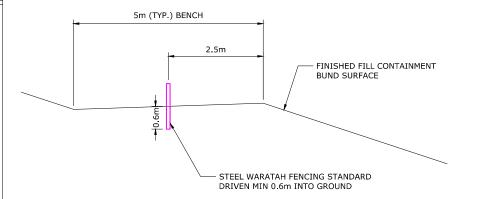
ORIGINAL IN COLOU A 12/03/20 ISSUED FOR INFORMATION Rev. Date Revision Details




Gaia Engineers P O Box 51 295, Pakuranga Auckland 2140 5 Carmont Place, Mt Wellington Auckland 106 New Zealand Tel: 09 276 5673 Mobile: 021 426 012 Email: info@gaia-engineers.co.nz


	Project Director:	Signature:	Date:
	K. C. CHEUNG		
	Designed:		
	M. KERNOT		
	Design Review:		
	K. C. CHEUNG		
	Drawn:		
	S. CHEN		
	Drafting Check:		
)	M. KERNOT		

Document Set ID: 3490860 Version: 1, Version Date: 14/04/2022



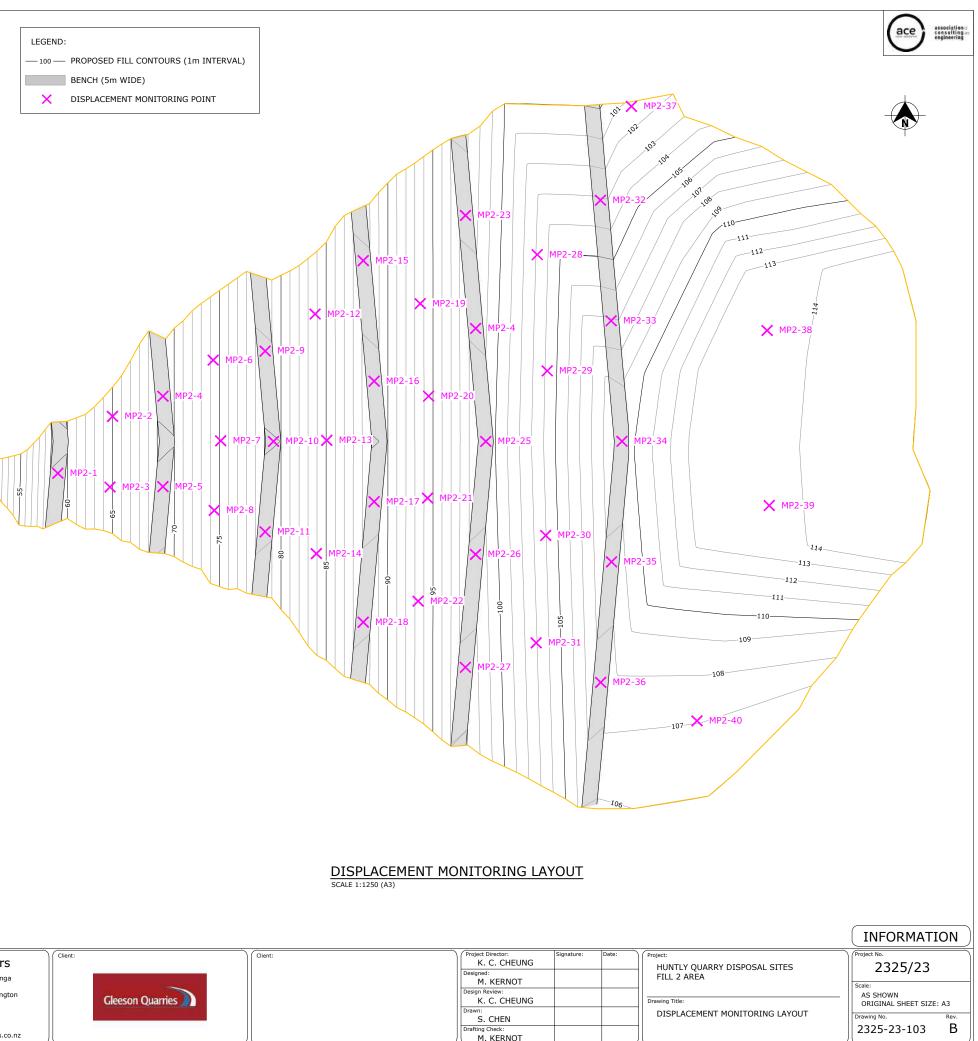
Document Set ID: 3490860 Version: 1, Version Date: 14/04/2022

Document Set ID: 3490860 Version: 1, Version Date: 14/04/2022

0		4 5		
	DISPLACE	MENT MONITORING FREQUENCY AND	ALERT TRIGGER LEVELS	LEGEND:
	MONITORING POINT TYPE	MONITORING FREQUENCY	ALERT TRIGGER LEVEL	
	STEEL WARATAH FENCING	MONTHLY INCREASE TO WEEKLY IF ALERT TRIGGER LEVEL IS	100mm NET LATERAL DISPLACEMENT OF STRUCTURAL FILL	BENCH (5m WIDE
	STANDING	EXCEEDED	100mm NET VERTICAL DISPLACEMENT OF STRUCTURAL FILL	
	NOTE: THE ALERT LEVELS MAYB	E REVISED DURING CONSTRUCTION IN	N RESPONSE TO OBSERVED DISPLACEMENTS	

TYPICAL DISPLACEMENT MONITORING DETAIL SCALE 1:100 (A3)

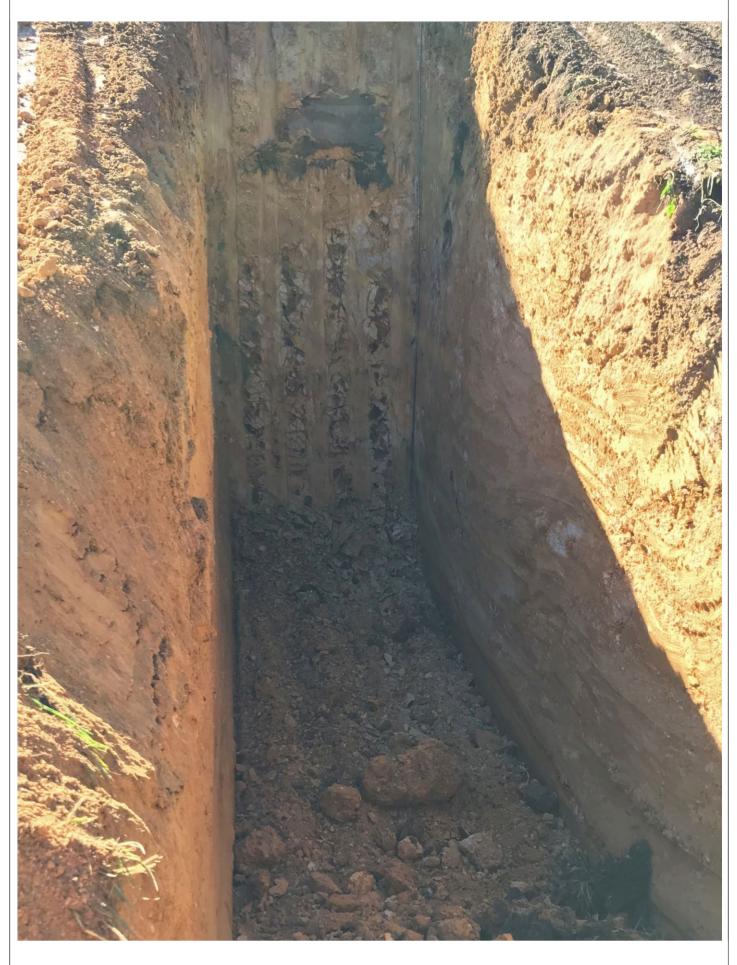
	P	ROPOSED MON	ITORING P	OINTS	
ID	EASTING (m)	NORTHING (m)	ID	EASTING (m)	NORTHING (m)
MP2-1	433555.34	721312.43	MP2-21	433677.60	721304.23
MP2-2	433573.42	721331.24	MP2-22	433674.48	721270.15
MP2-3	433572.59	721307.87	MP2-23	433690.13	721397.67
MP2-4	433590.09	721337.89	MP2-24	433693.49	721360.31
MP2-5	433590.08	721308.02	MP2-25	433696.86	721322.96
MP2-6	433606.69	721349.83	MP2-26	433693.49	721285.61
MP2-7	433609.19	721323.16	MP2-27	433690.11	721248.28
MP2-8	433607.05	721300.15	MPZ-28	433713.87	721384.68
MP2-9	433623.88	721352.83	MP2-29	433717.16	721346.27
MP2-10	433626.66	721322.96	MPZ-30	433716.67	721291.87
MP2-11	433623.88	721293.09	MP2-31	433713.50	721256.36
MP2-12	433640.41	721365.05	MPZ-32	433734.78	721402.68
MP2-13	433644.27	721323.30	MP2-33	433738.31	721362.83
MP2-14	433640.81	721285.87	MPZ-34	433741.87	721322.99
MP2-15	433656.33	721382.72	MP2-35	433738.43	721283.14
MP2-16	433659.92	721342.88	MPZ-36	433734.85	721243.30
MP2-17	433659.92	721303.04	MP2-37	433745.02	721433.72
MP2-18	433656.32	721263.20	MPZ-38	433789.87	721359.62
MP2-19	433675.19	721368.51	MP2-39	433790.58	721301.76
MP2-20	433677.95	721337.91	MPZ-40	433766.69	721230.58


ORIGINAL IN COLO B 14/04/20 REVISED FOR INFORMATION A 12/03/20 ISSUED FOR INFORMATION Rev. Date Revision Details

Gaia Engineers P O Box 51 295, Pakuranga Auckland 2140 5 Carmont Place, Mt Wellington Auckland 106 New Zealand Tel: 09 276 5673 Mobile: 021 426 012 Email: info@gaia-engineers.co.nz

Project Director: K. C. CHEUNG	Signature:	Date:
Designed: M. KERNOT		
Design Review: K. C. CHEUNG		
Drawn: S. CHEN		
Drafting Check: M. KERNOT		

APPENDIX B – Test Pit & Historic Borehole Logs


Description	No. Sheets:
Test Pit Log Report Sheets	25
Historic Borehole Logs Sheets	12

	5		Г	ES	T F	PIT	LO	G					EST F 30	סו דוס. T	P2C Sheet		
PROJECT:	Huntly Quarry Dispo	sal Sites		CLIE	NT: (Gleeson	Quarries	s Ltd.				JC	DB No	D:	2325		
LOCATION:	Huntly Quarry			NZGD20	00 Mt	Eden C	rcuit			RTED:				6/2019			
COORDINATES:	E.433597.7m N.721356.3m		GROUND R.L (m): DATUM:	69.60m Auckland	l Vertic	al Datu	m 1946		ATHE	SHED: R:			Fine	6/2019			
	Soil/Ro	ock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr	2		Scala s/100m	nm)	Sample ID	Sample Type	R.L (m)
0.00-0.20 m TOPSOIL					-				ip		╞╋				,	0	-
0.20-1.50 m																	-
Silty CLAY; light gr	ey and orange. Very stiff	t, moist, low to n	noderate plasticity, insen	isitive.	-	× × ×			134	68							- 69.0
					- - - -												-
					- - 1 - -	×_×_			188+						-		-
1.50-4.50 m					-				188+								-
Completely weather	ered, light grey with oran moist, non plastic].	ge streaks, MUI	DSTONE; extremely wea	ak													68.0 —
					2		Waikato Coal Measures		188+						-		-
					- - - -		kato Coal										-
					- - - -		Wa										67.0 — - -
					3										-		-
					- - - -												-
					-												- 66.0 — -
					- - 4										-		
					- - - -												-
	End of	f Pit @ 4.5 m			-												- 65.0 — -
					- - - 5 -							_			-		-
					- - - -												-
					- - - -												- 64.0 — -
					- 6												-
Contractor: Glee	eson Civil Ltd.	emarks:				1			Gro	undwa	l ater r	notes	s:		I	1	1
	tch 30t Excavator		ected to BS1377 - Dial N	o. 1872					-					untered	ł		
Approved: KCC			Logged in	accordan	ice wit	n NZ Ge	otechnic	al Soci	ety (2	005) g	guide	lines	6				

TP201
PROJECT: Huntly Quarry Disposal Sites

s JOB No: 2325

			-	TES	ΤF	лΤ		G				TE	ST P	DI TID. T	P20	2	
GAI	A ERS			0	•••	••						1:3	0		Sheet	1 of 1	
PROJECT:	Huntly Quarry Dis	sposal Sites	1	CLIE	NT: (Gleesor	Quarries	s Ltd.				JO	B No):	2325		
LOCATION: COORDINATES	Huntly Quarry : E.433639.2m N.721326.0m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 60.20m Auckland				PIT		RTED: SHED: R [.]		19		/2019 /2019			
		oil/Rock Description			Depth(m)	Graphic	Geologic Unit	Ground water	Vane Stre	Shear ength Pa)	(ala	m)	Sample ID	Sample Type	R.L (m)
0.00-1.00 m					ă			0 -	Тр	Tr	2	4 6	8 1	10 12	Sat	Sam	
Completely weat [clayey SILT; Har 1.00-4.50 m Highly weathered weak, limonite ar @ 1.0m - becom	rd, moist, non plastic]. d, light grey and orange nd MnO staining on dei	e with red streaks, fects [clayey SILT; ered to highly wea	DSTONE; extremely we sandy MUDSTONE; ext nard, moist, low plasticit thered, light grey and c aces.	tremely ty].	- - - - - - - - - - - - - - - - - - -	× >>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>			188+								60.0 - 59.0
					2	× ()× ()× ()× ()× ()× ()× ()× ()× ()× ()	Waikato Coal Measures		188+								58.0
					3				188+								57.0 -
	En	id of Pit @ 4.5 m			4				188+								56.0 -
					5												55.0 —
Contractor: G	leeson Civil Ltd.	Remarks:			6				Gro	undwa	ter n	otes:					
Plant: Hi Logged: M Checked: K	itatch 30t Excavator		ected to BS1377 - Dial M	No. 1872 n accordar	nce wit	h NZ Ge	eotechnic	al Soci	Gro	undwa	iter N	lot Er		ntered			

TP202

PROJECT: Huntly Quarry Disposal Sites

GA	NIA.		-	TES	ΤF	PIT	LO	G					EST 30	PIT ID. T	P20 Sheet		
PROJECT:	Huntly Quarry Di	sposal Sites		CLIE	NT:	Gleesor	Quarrie	s Ltd.				JC	DB N	lo:	2325		
LOCATION: COORDINATE	Huntly Quarry ES: E.433698.1m N.721335.1m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 63.70m Auckland				PIT	STAR FINIS ATHE	HED:				06/2019 06/2019 9			
	s	oil/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr	2	(blow		mm)	Sample ID	Sample Type	R.L (m)
1.00-1.50 m Completely to	hiahlv weathered. liaht a	rev with orange stre			- - - - - - - - - - - - - - - - - - -	X X X X X X X X X X X X X	, , ,		129	41 52							
weak [clayey \$	SILT; Very stiff, moist, low	plasticity].					Waikato Coal Measures		UTP								
	Fr	nd of Pit @ 3.0 m			2												
	E	iu ui Pit ((3.0 iii			- 4												
					- 6												
Plant: Logged: Checked:	Gleeson Civil Ltd. Hitatch 30t Excavator MK KCC	Remarks: SV readings corre Terminated Due to			1				Gro		ater	Not E	Enco	ountered	1		1
Approved:	KCC		Logged ir	n accordar	nce wit	n NZ G	eotechnic	al Soci	ety (2	UU5) g	guide	elines	5				

TP203

PROJECT: Huntly Quarry Disposal Sites

GAN	A ERS		-	TES	T F	PIT	LO	G			TES 1:30	ST PI	Τŀ	P20 Sheet		
PROJECT:	Huntly Quarry Dis	sposal Sites		CLIE	NT:	Gleesor	Quarrie	s Ltd.			JOE	B No:		2325		
LOCATION: COORDINATES	Huntly Quarry E.433707.4m N.721316.3m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 64.00m Auckland				PIT		RTED: SHED: R:	19	9/06/2 9/06/2 ine				
	Sc	il/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr	Sc blows/	ala 100mm 8 10)	Sample ID	Sample Type	R.L (m)
0.00-0.10 m					Ŀ						ŤŤ				0,	_
	and orange. Firm, mois	st, low plasticity.		/			Colluvium	-	188+							
0.50-3.00 m Silty CLAY with s saturated, low p	some fibrous organics; lasticity, moderately ser	grey-brown with bla sistive.	ack mottles; Firm, wet t	O		ala x 2 ala x 2 ala x 2 ala x 2 ala x 2 ala x 2										-
									45	16						63.0 — - -
						x	Alluvium		41	14						
					2	ala x ala x ala x ala x ala x ala x ala x ala x										62.0 — - - - -
3.00-4.00 m Moderately wea	thered, light grey, mass	ive, sandy MUDST	ΟNE: verγ weak; shear	red fabric.	3	× ×	ý									- - 61.0 —
							Waikato Coal Measures									
	En	d of Pit @ 4.0 m			4											60.0 - - - - -
					5											
					- - - - - - - - - - - - - - - - - - -											
	leeson Civil Ltd.	Remarks:	eted to D04077 D1	No. 4070					_	undwa	 					
Logged: N Checked: K	itatch 30t Excavator IK CC CC	SV readings corre		No. 1872 in accordar	nce wit	h NZ G	eotechnic	al Soci		undwa 005) g		ICOUN	tered			

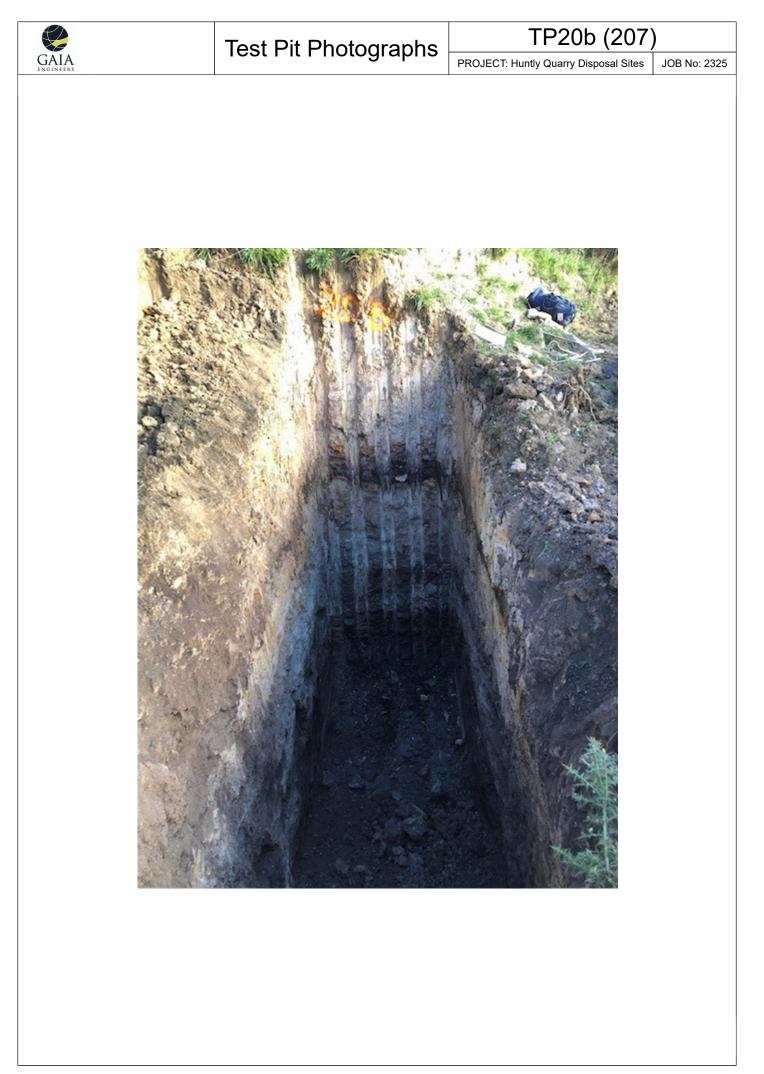
TP204 PROJECT: Huntly Quarry Disposal Sites

	L (5		TES	T F	PIT	LO	G				TE 1:3		DI TI T	P2C		
PROJECT:	Huntly Quarry Disposal	Sites	CLIE	NT: (Gleesor	Quarries	s Ltd.				JO	B No	D:	2325		
LOCATION: COORDINATES:	Huntly Quarry E.433616.0m N.721282.6m	SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 73.70m Auckland				PIT	STAF FINIS ATHE	HED:		1		5/2019 5/2019			
	Soil/Rock D	lescription		Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr	2	Si (blows)		im) 10 12	Sample ID	Sample Type	R.L (m)
0.00-1.50 m Clayey SILT; light s	grey, orange and brown. Ver	y stiff, moist, low plasticity.				FILL		188+								73.0
1.50-3.50 m Clayey SILT; light s	grey and dark orange. Very s	stiff, moist, low plasticity.		- 2				188+						-		72.0
@3.0m - becomin	g light grey and orange with	n pink streaks		3	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Waikato Coal Measures		188+								71.0
	End of Pit	@ 3.5 m		- - - - - - - - - - - - - - - - - - -				188+						-		
														-		
	c	adings corrected to BS1377 - Dial	No. 1872 in accordar	ice wit	h NZ Ge	eotechnic	al Soci	Gro		ater N	Not E	ncou	Interec	t t	·	1

TP205

PROJECT: Huntly Quarry Disposal Sites

	A.		Т	ES	T F	PIT	LO	G				TE:)a (2 Sheet		5)
PROJECT:	Huntly Quarry Dis	posal Sites		CLIE	NT: (Gleesor	n Quarrie	s Ltd.				JOI	3 No:		2325		
LOCATION: COORDINATES:	Huntly Quarry E.433780.5m N.721399.4m		GROUND R.L (m):	NZGD20 96.00m Auckland				PIT		RTED: SHED: :R:		2	0/06/2 0/06/2 ine				
	Soi	I/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	e Shear ength (Pa) Tr	2	Sc (blows/) 12	Sample ID	Sample Type	R.L (m)
0.00-0.10 m TOPSOIL 0.10-0.50 m Clayey SILT; brow	n. Firm, moist, modera	ate plasticity, finely	fissured.	/			· · · · · · · · · · · · · · · · · · ·										
0.50-1.10 m Clayey SILT; light	grey, Stiff, moist, mode	erately plastic, fiss	ured.				- - - - -		UTP								
1.10-1.40 m Carbonaceous SII	T; black and purple-br	own. Stiff with har	d black inclusions, moist		- 1 - - - -		×		UTP								95.0 — - -
1.40-2.30 m Highly weathered, spaced joints.	light brown, SILTSTO	NE; very weak; hi	ghly fissured, extremely c	closely		× × × × × × × × × × × × × × × × × × ×	Waikato Coal Measures		UTP								-
0.00.0.70					2	* * * * * * * * * * * * * * * * * * * *	Waikato		UTP								
2.30-2.70 m Highly weatherd, t dry, sub-horizonta 2.70-3.50 m	black and dark grey, C Ily bedded, relict leaf ii	OAL with interbed npressions.	ded carbonaceous SILT;	weak,		× × × ×			UTP								
	ered, light grey, SILTS d.	TONE; very weak,	dry, widely spaced joints	s, sub-	3	× × × × × × × × × × × × × × × × × × ×			UTP								- - 93.0 — - - -
	Enc	d of Pit @ 3.5 m			-	****		-	UTP								-
					4												92.0
					5												- - - 91.0 —
					- 6												- - -90.0
	eson Civil Ltd. atch 30t Excavator	Remarks: SV readings corre	ected to BS1377 - Dial No	o. 1872	I	1	I	I	-	undwa undwa				tered			1
Logged: PS Checked: KC Approved: KC	С		Logged in	accordar	nce wit	h NZ G	eotechnic	cal Soc	iety (2	:005) g	juide	lines					



TP20a (206)

PROJECT: Huntly Quarry Disposal Sites JOB No: 2325

GAIA		Т	ES	ΤF	PIT	LO	G				TES 1:30		2 0)b (2 Sheet		7)
PROJECT:	Huntly Quarry Disposal Sites	I	CLIE	NT: (Gleesor	Quarries	s Ltd.				JOE	3 No:		2325		
LOCATION: COORDINATES:	Huntly Quarry E.433754.8m N.721264.5m	GROUND R.L (m): 8	NZGD20 87.00m Aucklanc				PIT	STAR FINIS ATHE	HED:		20	0/06/2 0/06/2 ne				
	Soil/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr		Sca plows/1	100mm)		Sample ID	Sample Type	R.L (m)
0.00-0.20 m TOPSOIL				_												-
0.20-0.50 m	Very stiff, moist, moderate plastic	ty, finely fissured.		-												-
0.50-1.90 m Clayey SILT; light gro highly fissured.	ey and minor grey-brown mottles;	Very stiff, moderate plasticity,	moist,					UTP								-
				- - 1 - - - -				UTP								86.0 — - -
					$\begin{array}{c} & & \\$			UTP								-
1.90-2.10 m Highly weathered, gu sub-horizontal beddi 2.10-4.15 m	rey-brown/black carbonaceous SII ing.	TSTONE/LIGNITE; very wea	k; dry,	- - - - - -		Waikato Coal Measures		UTP								- 85.0 — -
	ght grey SILTSTONE; very weak; r	osely			Waikato C		UTP								-	
				3				UTP								- 84.0 — - -
3.4 to 3.7m - carbor	naceous SILTSTONE beds comm	on						UTP								-
4.15-4.30 m Highly weathered, lig	ght brown, slightly carbonaceous S End of Pit @ 4.3 n	SILTSTONE; weak; dry.		- 4 - 4 	× × × × × × × × × × × × × × × × × × ×		-	UTP								83.0
				- - - - - - - - - - - - - - - - - - -												- - - 82.0 —
																-
				- 6												- - - -81.0 —
Contractor: Glees	son Civil Ltd. Remarks:							Gro	undwa	ter nr	otes.					
		corrected to BS1377 - Dial No Logged in a		nce with	n NZ Ge	eotechnic	al Soci	Gro	undwa	iter N	ot En	icount	ered			

			-	TES	тс	лт		C				TES	ST PI		P20	8	
GA	IA						LU	U				1:3	D		Sheet	1 of 1	
PROJECT:	Huntly Quarry Dis	sposal Sites		CLIE	NT:	Gleesor	n Quarrie	s Ltd.				JO	3 No:		2325		
LOCATION: COORDINATES	Huntly Quarry S: E.433553.7m N.721344.3m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 63.20m Auckland				PIT		RTED: SHED: R:		0	7/11/2 7/11/2 ne				
	Se	bil/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre (k	Shear ength Pa)		(blows/			Sample ID	Sample Type	R.L (m)
0.00-0.30 m					-				Тр	Tr	2	4 6	8 10	12	S	Sa	
TOPSOIL																	63.0
0.30-1.00 m Clayey SILT; or	ange-brown mottles. Stil	ff, moist, moderate	plasticity, fissured textu	ire.					140	30							
1.00-3.50 m Clayey SILT wit with light grey ii	h some completely wea nclusions. Gravels are e	thered medium gra xtremely weak and	vels; yellow and orange friable	e-brown	- 1 				109	37							- - 62.0 —
							Colluvium										-
					2		Ŭ										- - 61.0 —
																	-
					3												
																	60.0 — - -
3.50-5.70 m SILT; yellow-bro weathered grey	own and light grey mottle wacke, limonite and Mn	es. Hard, low plasti O staining on relict	city, moist [inferred com fractures]	pletely													-
					4		wacke										- - 59.0 —
						(* X) X X X (* X) X X X (* X)	Newcastle Group Greywacke										-
					5	× * * (* * *) * * * (* *) * * *	Newcastle										-
					- - - - - - -												58.0 — - -
	En	d of Pit @ 5.7 m				* * *		_									-
					6												
Contractor: (Gleeson Civil Ltd.	Remarks:			I			I	Gro	undwa	ater n	otes:				I	1
Logged: F	Hitatchi 30t Excavator ⊃S ≺CC	SV readings corre	ected to BS1377 - Dial I	No. 1872					Gro	undwa	ater N	lot Er	icoun	tered			
	KCC		Logged in	n accordar	nce wit	h NZ Ge	eotechnic	cal Soci	ety (2	005) g	guidel	lines					

	.s	7	TES [®]	T F	ΡIΤ	LO	G				TEST 1:30		P2C		
PROJECT:	Huntly Quarry Disposal Sites	1	CLIE	NT: (Gleesor	Quarries	s Ltd.				JOB N	o:	2325		
LOCATION: COORDINATES:	Huntly Quarry E.433549.6m N.721311.6m	SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 51.30m Auckland				PIT	STAR FINIS ATHEI	HED:			I/2019 I/2019			
	Soil/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ngth Pa) Tr		Scala ows/100n	nm) 10 12	Sample ID	Sample Type	R.L (m)
0.00-0.30 m TOPSOIL				-		۶									-
0.30-0.80 m Clayey SILT; yellov	w-brown. Stiff, moist, moderate plasticit	y, slightly fissured texture	Э.			Colluvium									51.0
0.80-1.50 m Clayey SILT with s moist [inferred con fractures]	ome sand; yellow-brown and light grey npletely weathered greywacke, limonite	mottles. Hard, low plasti and MnO staining on re	icity, lict	- - - - - - -	$\times \times $	Newcastle Group Material									
1.50-2.00 m Highly weatherd, g joints with limonite	rey, brown and orange, SANDSTONE; and MnO staining, rare moderately we	Very weak, very closely athered core stones	spaced		× × × × × × × × × × × × × × × × × × ×	Newcastle (-
	End of Pit @ 2.0 m			2	× × × × × × × × × × × × × × × × × × ×										49.0 — - - - - -
				3											
				4											47.0
				5											- 46.0
Contractor: Clo	eson Civil Ltd. Remarks:			6				Gro	Indwo	ter not					
	tchi 30t Excavator SV readings corr	ected to BS1377 - Dial N Logged ir	No. 1872	nce wit	h NZ Ge	eotechnic	al Soci	Grou		ter No	t Enco	unterec	ł		

TP209

PROJECT: Huntly Quarry Disposal Sites

JOB No: 2325

GA	JA NEERS		7	res [.]	T F	PIT	LO	G				TEST 1:30	PIT ID. T	P21 Sheet		
PROJECT:	Huntly Quarry Dis	sposal Sites	1	CLIE	NT: (Gleeson	Quarrie	s Ltd.				JOB N	lo:	2325		
LOCATION: COORDINATE	Huntly Quarry ES: E.433528.9m N.721288.9m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 61.70m Auckland				PIT	STAR FINIS ATHEF	HED:			1/2019 1/2019			
	Si	oil/Rock Description	l		Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ngth Pa) Tr		Scala blows/100	mm)	Sample ID	Sample Type	R.L (m)
0.00-0.30 m TOPSOIL					-		ium									-
0.30-0.60 m Clayey SILT; o	range-brown; Stiff, low pl	asticity, moist, fissu	ıred				Colluvium									-
0.60-4.70 m Sandy SILT; lig greywacke, ve	pht grey and orange. Har ry closely jointed, with lin	d, non plastic, mois nonite and MnO sta	t [inferred completely we ining].	eathered	- - - - - - - - - - - - - - - - - - -									-		- 61.0 — - - - -
																- - - - - - - - - - -
From 2.4 - 2.8	im: pink streaks						Group Material							-		
					- - - - - - - - - - - - - - - - - - -		Newcastle Gro							-		
4.70-5.70 m Completely we spaced joints v	eathered, grey, brown and with limonite and MnO sta	d orange, SANDST aining, some highly	ONE; Very weak, very c weathered core stones	losely												- - - 57.0 — - - -
	Er	id of Pit @ 5.7 m						-								- - - - 56.0 —
					E											
					6											.
Contractor:	Gleeson Civil Ltd.	Remarks:			1		L	I	Grou	undwa	iter no	otes:		L	I	
Logged: Checked:	Hitatchi 30t Excavator PS KCC	SV readings corre	ected to BS1377 - Dial N				ote -1						ountered	t		
Approved:	KCC		Logged In	n accordar	ICE WIL	II INZ GE	JUGCITI	ai 300l	era (20	.00) g	uuell	1100				

TP210 PROJECT: Huntly Quarry Disposal Sites

s JOB No: 2325

GAL	A		-	TES	T F	PIT	LO	G					TP2	11 et 1 of 1	
PROJECT:	Huntly Quarry Disposal S	Citor		CLIE			Quarries	o +d				:30 OB No:	2325		
									0740	TED.					
LOCATION: COORDINATES:	Huntly Quarry E.433514.4m		SURVEY CIRCUIT: GROUND R.L (m):	NZGD20 48.20m	00 Mt	Eden C	ircuit		STAR FINIS			07/11/20 07/11/20			
	N.721324.7m		DATUM:	Auckland	l Vertic	al Datu	m 1946		ATHEI			Fine			
	Soil/Rock D	escription			Depth(m)	Graphic Log	Geologic Unit	Ground water	Vane Stre (kF		(blow	Scala /s/100mm) 6 8 10 1	2 Sample ID	Sample Type	R.L (m)
0.00-0.20 m TOPSOIL					-										-
0.20-0.60 m Sandy SILT with so completely weathe	ome clay; light grey and yello red greywacke].	ow-brown. H	ard, non plastic, moist	[inferred			1aterial								48.0
0.60-1.60 m Highly weathered, smooth, planar join stones	grey, brown and orange, SA nts with limonite and MnO sta	NDSTONE; aining, rare r	Very weak, very close noderately weathered	ly spaced, core	- - - - - - - - - - - - - - - - - - -		Newcastle Group Material								
	End of Pit	@ 1.6 m			-			-							-
					2										- 46.0 — - - -
					3										- - - 45.0 — - - -
					- - - - - - - - - - - - - - - - - - -										
					5										 43.0
					- - - - - - - - - - - - - - - - - - -										
	c		cted to BS1377 - Dial I Logged i	No. 1872 n accordar	ice wit	n NZ Ge	eotechnic	al Soci	Grou	undwa		Encounte	red		

GAIA		TE	EST	ΓF	PIT	LO	G					EST :30	PIT IC	P21	2 1 of 1	
PROJECT:	Huntly Quarry Disposal Sites		CLIEN	IT: (Gleesor	Quarrie	s Ltd.				J	DB N	No:	2325		
LOCATION: COORDINATES:	Huntly Quarry E.433483.7m N.721343.1m	GROUND R.L (m): 47.	ZGD200 .70m ickland			ircuit m 1946	PIT	STAF FINIS ATHE	HED:				1/2019 11/2019 9			
	Soil/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr	2	(blow)mm) 10 12	Sample ID	Sample Type	R.L (m)
0.00-0.30 m TOPSOIL																-
0.30-1.10 m Clayey SILT with tra moderate plasticity, †	ce sand; yellow-brown and orange-br fissured	own mottles. Very stiff, moist	t,	- 1	X X X X X X X X X X X X X X X X X X X			113	45							- - - 47.0 — - -
1.10-3.20 m Sandy SILT; light gre greywacke].	ey and orange. Hard, non plastic, mois	st [inferred completely weath	hered	-		Newcastle Group Material										- - - - - 46.0 — -
				- 2		A A										
From 3.0m - becom	hing very weak rock strength End of Pit @ 3.2 m			- 3			_									-
				- 4												44.0
				- 5												
				- 6												42.0
	son Civil Ltd. Remarks: chi 30t Excavator SV readings corr	ected to BS1377 - Dial No. 1 Logged in acc			h NZ Ge	eotechnic	cal Soci	Gro		ater	Not I	Enco	ountere	ed		

TP212 PROJECT: Huntly Quarry Disposal Sites

JOB No: 2325

GA	IA		Т	ES	T F	PIT	LO	G				TES 1:30	ST PIT	TF	P21		
PROJECT:	Huntly Quarry Dis	sposal Sites		CLIE	NT: (Gleesor	Quarries	s Ltd.				JOE	3 No:		2325		
LOCATION: COORDINATES	Huntly Quarry		GROUND R.L (m):	NZGD20 81.10m Auckland				PIT		RTED: SHED: R:		07	7/11/20 7/11/20 ne				
	So	il/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Stre	Shear ength Pa) Tr		Sc (blows/ ⁻	ala 100mm) 8 10	12	Sample ID	Sample Type	R.L (m)
0.00-0.50 m TOPSOIL & Tra	ack Fill				-												81.0
0.50-3.50 m Silty CLAY; yell	ow-brown. Stiff to very s	tiff, moist, moderat	e plasticity		- - - - - - - - - - - - - - - - - - -												
									177	27							80.0 — - - - -
					2				164	63							- - - 79.0 — -
					- - - - - - - - - - - - - - - - - - -		Newcastle Group Material										- - - - - - 78.0 — - -
3.50-5.40 m Clayey SILT; lig plasticity, moist	ht grey and yellow-brow [inferred completely wea	n mottles with pink athered greywacke	: veining. Very stiff, mode a].	rate	- - - - - - - - - - - - - - - - - - -		Z										
					- - - - - - - - - - - - - - - - - - -	× ^ × ^ × ^ × ^ × ^ × ^ × ^ × ^ × ^ × ^											- - - - 76.0 -
5.40-6.20 m SILT with trace and MnO prese greywacke].	clay; light grey and fine nt on very closely space	orange veining. Ha d relict jointing [inf	ard, moist, low plasticity, l erred completely weathe	imonite red		$\begin{array}{c} \times \times \times \\ \end{array}$											
Contractor: (Gleeson Civil Ltd.	Remarks:							Gro	undwa	l Iter n	ntee.					
Plant: H Logged: F Checked: H	Hitatchi 30t Excavator PS KCC KCC		ected to BS1377 - Dial N Logged in		nce with	n NZ Ge	eotechnic	al Soci	Gro	undwa	iter N	Not Er	ncounte	ered			

GA	IA			TES	T F	PIT	LO	G					EST	PIT ID. T	P21 Sheet		
PROJECT:	Huntly Quarry Dis	posal Sites		CLIE	NT: (Gleesor	n Quarrie	s Ltd.				J) B N	o:	2325		
LOCATION: COORDINATES	Huntly Quarry 5: E.433584.1m N.721256.2m		SURVEY CIRCUIT: GROUND R.L (m): DATUM:	NZGD20 81.10m Auckland				PIT		RTED: SHED: :R:				1/2019 1/2019			
	So	il/Rock Description			Depth(m)	Graphic Log	Geologic Unit	Ground water	Vane Stre (k	e Shear ength Pa) Tr		(blow	Scala s/100r	nm)	Sample ID	Sample Type	R.L (m)
SILT with trace and MnO prese greywacke].	clay; light grey and fine on ton very closely space	orange veining. Ha d relict jointing [info d of Pit @ 6.2 m	rd, moist, low plasticity erred completely weath	r, limonite nered	-	× × × < × × > × × ×	×	_									75.0 -
					- - - - - - - - -												-
					7												- 74.0 - -
																	73.0
					9												- - - 72.0 — - -
					- - - - - - - - - - - -												
					 12												
Plant: H Logged: F Checked: H	Gleeson Civil Ltd. litatchi 30t Excavator 2S SCC	Remarks: SV readings corre	ected to BS1377 - Dial		I	<u> </u>	I	<u> </u>	Gro		ater I	Not E	Enco	untered	t t	<u> </u>	I
Approved: k	CC		Logged	in accordar	nce wit	h NZ G	eotechnic	al Soc	iety (2	005) g	juide	elines	3				

TP213

PROJECT: Huntly Quarry Disposal Sites

JOB No: 2325

	Hole N	ame :H	10006	Client	: Stev	ensons Resources	s Limited	
Coll	ar Coordin	ates (Mt. E	Eden Circuit):	Collar X :2699807.	00	Collar Y :6399179.00	Collar Z :	99.50
Drilli	ing Compa	ny: Brown	Brothers Ltd.	Drilled By: Kerry Bro	own	Logged By:	A Spa	rgo
Hole L	ength : 100	0.00	Segment Start	Depth :0.00	Segme	ent End Depth : 19.31	Scale 1	: 100
Depth At	Geology Code	Quarry Code		Geolo	gy Descrip	otion		Elevatio
	ci	OB	Topsoil, moist, v	very stiff, brown clay, gr	ading to	orange-brown sandy clay b	elow 1.5m.	
		ОВ	Moist to wet, fire	m, orange-grey clay w s	some sub	bang med sand.		
-2.5		ОВ						97.1
		ОВ						
5.0	-wi/0s	ОВ		and purple-grey coal ar aces decomposed and/o		naceous mdst/szst, of waika d.	ito coal	94.7
		ОВ						
		ОВ				nposed to moist, very stiff,	yellow-grey	
7.5	Gs	ОВ	clay, w many sn	nall red nodules, 1-2mm	ו (Fe-ox)).		92.3
		OB						
-10.0		OB						89.8
		OB						
	Gs	OB	yellow-white, fin			ed, banded yellow-brown ar nodules, 1-2mm (Fe-ox), an		
12.5		BR						87.4
		BR						
15.0		BR						85.0
		BR						
		BR	CLAY weathered		hitesh gr	ed with fine bands of green rey, fine clayey silt. Occ nod w clay.		
17.5	Gs	BR	Ext weak highly	leached Randed with	alternatio	ng layers of fine to med gra	ined com clav	82.6
	Gş	BR	/ alt. Nod of Fe ox		coated in	bottle green, semi transluc		
ntly - Geolo	gy Legend			[=	Ι	3	Ouarry Code Legend Overburden	
Core Loss/	Washout	Clay/Ash	Fill	Tertiary Carbonaceous Mudstone	Tertiary Carbo	onaceous Sandstone Greywacke Argillite	Brown/Soft P	'it Run
Greywacke Co							Blue Brown	

	Hole N	ame :H	IQ006	Clier	nt: Ste	vensons Resource	s Limited	
Colla	ar Coordin	ates (Mt. E	den Circuit):	Collar X : 269980	07.00	Collar Y :6399179.00	Collar Z	99.50
Drilli	ing Compa	ny: Brown	Brothers Ltd.	Drilled By: Kerry	Brown	Logged By:	A Spa	rgo
Hole L	ength :100	0.00	Segment Start [Depth :19.31	Segm	nent End Depth : 38.61	Scale 1	: 100
Depth At	Geology Code	Quarry Code		Ge	ology Descr	ription		Elevatio
-20.0	Gs	BR BR	alt. Nod of Fe ox		n coated i	ting layers of fine to med gra n bottle green, semi translud		80.2
-22.5	Gs	BR BR	med grained, var		lense or	ered. Banded with irregular la pinch out. Nod of Fe oxide c clay vn		77.8
-25.0	Gs	BR BB BB	calcite & other n		n wide. Cl	n mat is soft to hard with sm alt with green clay. Hw red-l weak, Mw & cl alt.		75.4
-27.5		BB BB BL						72.9
-30.0	Gs		& dark greenish	-grey beds of very fir	ne sandy-s	s of greenish-grey, v fine to silt. Mod strong with some va d. Mod veined with v fine ve	ariation in	70.5
-32.5								68.1
35.0								65.7
-37.5	Gs		sandy-silt. Bed t	thickness varies with	some fine	y, v.fine-fine silty-sandstone beds discont, lensing out. C y on defect surf. Abundant v	Clattered &	63.3
intly - Geolog	gy Legend		k 1	I- 1			Quarry Code Legend	
Core Loss/	Washout	Clay/Ash	Fill	Tertiary Carbonaceous Mudston	- 12 C	arbonaceous Sandstone Greywacke Argillite	Overburden	11 D.
8							Brown/Soft F Blue Brown	n Kun
Greywacke Cor	nglomerate	Greywacke Chipv	vacke Greywacke Sandst	one Greywacke Siltsto	ne Fault/	Fault Zone Shear Zone	Bide Brown	

	Hole N	ame :H	Q006	Cli	ent: Ste	vensons Resource	es Limited	
Coll	ar Coordin	ates (Mt. E	den Circuit):	Collar X : 269	9807.00	Collar Y :6399179.00	Collar Z :	99.50
Drilli	ing Compa	ny: Brown	Brothers Ltd.	Drilled By: Ke	rry Brown	Logged By:	A Spa	rgo
Hole L	ength : 100	0.00	Segment Start [Depth : 38.61	Segm	nent End Depth : 57.92	Scale 1	: 100
Depth At	Geology Code	Quarry Code			Geology Desc	ription		Elevatio
		BL						
-40.0	Gs	BL BL	sandy-silt. Bed t	thickness varies w	ith some fine	y, v.fine-fine silty-sandstone beds discont, lensing out. (y on defect surf. Abundant v	Cl altered &	60.9
		BL	variably CI alter	ed & sl leached, w	ell srt, with s	one & v.fine grained sandy-s subrded & rded grains. Abun e, with some finer beds disc	dant green,	
42.5		BL						58.4
		BL	greenish-grey fi	ne grained sandst	one, str fault	t with irregular & discon lens ed by v. fine (micro) faults & (normal?). Sandstone beds a	& v.fine cl vn	
45.0		BL			some beus			56.0
43.0	Gs	BL				rounded-rounded grains. We		50.0
		BL	irregular veinlet	s of soft white (ze	eolite?) cl (no	HCL fizz) & crystalline-mass	sive ca	
47.5		BL	grained silty-sar	nd. Mod sorted, cl	alt & sl leach	ls of greenish-grey & grey, v ed. Beds are irregular, with le phases of deformation evi	abrupt wavy	53.6
50.0	Gs	BL						E1 (
50.0	Gs	BL	& dk grey, mod	srted, v.fine grain	ned, sandy-si	 mod -poorly srted,fine gra It. Grains are rounded-subro e discont, pinching out. Cl a 	unded with	51.2
	Gs	BL						
52.5	Gs	BL	/ srted, v.fine-fine	e sandy-silt. X-cut	: & offset by i	boorly-mod srt,fine silty-sand numerous vein filled micro fa dial. Veins are v.fine-fine (up	aults. Beds com	48.8
	Gs	BL						
55.0		BL	silty-sand. Beds	are of variable th	ickness with	ine, sandy-silt to mod srted, some discont & lensing out. einlets. Veins up to 2mm, co	Beds x-cut &	46.4
	Gs	BL						
57.5		BL /	/ sandy-silt. Beds	are plannar to ire	eg & discontir	od-poorly srted silty-sand & nous. Abundant v.fine, micro ey zeolite? clay-no apparent	veins common	44.0
ntly - Geolo	GS gy Legend						Quarry Code Legend	
Core Loss/	Washout	Clay/Ash		Tertiary Carbonaceous M	fudstone Tertiary C	arbonaceous Sandstone Greywacke Argillite		
				 			Brown/Soft F Blue Brown	it Run
Greywacke Cor	nglomerate	Greywacke Chipw	acke Greywacke Sandst	one Greywacke Si	Itstone Fault/	'Fault Zone Shear Zone	Blue	

	Hole N	ame :H	10006	Clier	nt: Stev	ensons Resources	s Limited	
Coll	ar Coordin	ates (Mt. E	Eden Circuit):	Collar X :26998	07.00	Collar Y :6399179.00	Collar Z :	99.50
Drill	ing Compa	ny: Brown	Brothers Ltd.	Drilled By: Kerry	Brown	Logged By:	A Spa	rgo
Hole L	ength : 100	0.00	Segment Start	Depth :57.92	Segm	ent End Depth : 77.22	Scale 1	: 100
Depth At	Geology Code	Quarry Code		G	eology Descri	iption		Elevatio
	Gs.		sandy-silt. Bec throughout sec	ls are plannar to ireg a q. Veins com filled witl	& discontine h white-gre	od-poorly srted silty-sand & v ous. Abundant v.fine, microv y zeolite? clay-no apparent f	veins common	
-60.0	Sz		GS fragmented	0 5 0	ized fragme	. Cr surfaces coated in dk gr ents. Coarse-fine py dissim ir prox 40°.	5. 5 5	41.5
00.0	Gs		beds tend to b	e poor-mod sorted wit	th rounded-	fine grained silty-sand. Coa -subrounded opaque & green odial. Variable CI altered. Stro	nish-grey	41.5
			/ bedded silty sa	and & sandy-silt. Some	e surfaces f	sized fragments of v.fine-fin inely veined with milky-whit softer zeolite (no HCL fizz). I	e, slightly	
-62.5			sandy-silt & fir	ne-v.fine, greenish-gre	ey,silty -sar	s & colour from v.fine graine nd, mod-poorly sorted. Grain e micro faults & iregular veinl	s com	39.1
	Gs		bedded GS at a		40°.Some	pyrite dissimented throughou poss core loss GS fragmente		
-65.0			silty-sand. Mod	d srted. Variably CI alt	ered. V.fine	ned, sandy-silt & fine-v.fine g e micro faults x-cut & offset (ne py grains. Core fragmente	GS. Some	36.7
			along fine vein	let (1mm) at alpha ar	ngle of appr	ized, angular fragments. GS ox 50°. Vein consists of whit -transparent qz. GS fraGS ha	te, soft	
	Gs		angular section	ns along alpha angles white, silty clay, sw pii	of 05, 10 & <u>nkish -brow</u>		n very fine	
67.5	<u>Sz.</u>		fine, soft, silty along vein mar	white clay with fine so gins.	oft, cl (zeol	ular, peeble-sized fragments ite) veins throughout. Minor	py inclusions	34.3
	Gs		Mod srt with so beds lensing o Bedded GS, in	ome sbround-rounded ut, others x-cut & offs tensely fragmented in	opaque gra et by micro to pebble-c	ained, sandy-silt & v.fine -fii ains. Bedding varies-reg-ireg b faults. V.fine faults & veins obble sized, angular fragmer ed silty-sand. Grains are	y with some	
70.0	<u>Sza</u>		subrounded-ro <u>pumerous SW.</u> Finely bedded,	unded with opaque gr <u>pipkish</u> v.fine grained GS. We	ains com &	rare clusters of fine py. Vei ted, fine beds of sandy-silt. <1mm), white-grey ireg veir	X-cut with	31.9
	Gs S		// discoloured pir fr // Bedded GS, in	nkish-brown. Minor we tensely fragmented in	eathering of	fracture surfaces pinkish-br ebble-cobble sized, angular f	own. GS com Fragments.	
72.5	Ğs		/// pyrite & dark o	reen, semi trans mine GS. Interbedded sand	eral (chlorit ly-silt. High	clay (zeolite?) & minor calcit e?). Surfaces com smooth, & ly veined & fract/faulted. Ve	& weak ins are v.fine,	29.5
	Gs		Clusters of fine	py. GS cl altered and mented grey, bedded,	v.fine grain	hite (Fe oxides) & mineralise ct, com along fine veinlets. G ned GS. Completely fragmen coated in white-grey, fine cla	S ted/crushed	
75.0	Sz		// mineralised wi	th dark green chlorite GS. Interbedded v.fin	with visible e grained,s	andy-silt. Intensely veined & e cleavage; rare clusters of fi andy-silt. Intensely veined & e?) & calcite. Minor py. GS cl	ine pyrit a faulted. Veins	07 1
75.0	Gs		Intensely fragr angular frag. C	mented v. fine grained	l interbedde y & pinkish	ed GS, crushed into gravel-co -brown, Fe oxide nodules. Cr	obble sized	27.1
	Gs		Intensely veine		eg, x-cuutin	ned, sandy-silt & clayey-silt. Ig v.fine network of white-gro . Occ sw pinkish-bro		
ntly - Geolo	gy Legend		-	= 1		1-1	Quarry Code Legend	
Core Loss,	/Washout	Clay/Ash	<u>e</u>	Tertiary Carbonaceous Mudstor		bonaceous Sandstone Greywacke Argillite	Overburden	
							Brown/Soft F	ıt Run
Greywacke Co		Greywacke Chip	wacke Greywacke Sand	distone Greywacke Siltsto		ault Zone	Blue Brown	

	Hole N	lame :H	Q006	Clier	nt: Stev	ensons Resource	s Limited	
Coll	lar Coordin	ates (Mt. Ed	den Circuit):	Collar X : 269980	07.00	Collar Y :6399179.00	Collar Z :	99.50
Drill	ing Compa	iny: Brown I	Brothers Ltd.	Drilled By: Kerry	Brown	Logged By:	A Spa	rgo
Hole L	ength :10	0.00	Segment Start [Depth : 77.22	Segm	ent End Depth : 96.53	Scale 1	: 100
Depth At	Geology Code	Quarry Code		Ge	ology Descri	ption		Elevatio
	Gs Gs Gs	BL BL BL	Intensely veined		g, x-cuutin	ned, sandy-silt & clayey-silt. g v.fine network of white-gr . Occ sw pinkish-bro		
80.0	Gs	BL	Str deformed GS	S, altered to soft grey	y clay. Zon	soft white-grey clay with m e x-cuts GS at 60-65°.		22.2
82.5		BL	are (<1mm), wh		w pinkish-	brown. No apparent fizz with		19.8
85.0		BB BB	gravel-cobble siz	zed, angular fragmer	nts. Clay co	S. Fragmented & cl altered in ated with reduced strength cl veined,some sw pinkish-l	(breaks readily	17.4
00.0		BB BL	silty-sand. Coars	ser beds are poor-mo	od sorted w	nterbedded v.fine,sandy-silt ⁄ith subrounded dk green gr white-grey, soft clay (zeolite	ains	17
87.5		BL		, v.fine grained GS. F , white crystalline zeo		d into peeble-sized, angular	frag. Clay	15.0
90.0		BL	Veined with num	nerous micro & fine v	einlets (up	layers of v.fine sandy-silt & to 10mm). Veins consist of c along vein. Fract are ofter	soft, white	12.6
02 F	Gs	BL	sorted. Fract > 1	100 per m, filled with	n cream col	5. Sand & lith clasts are roun loured zeolite & minor calcit 1 77.9m -78.0m -a 10cm fra	e. Crush or	10 1
92.5		BL	fault breccia up	to 60cm thick, with e	extremely f	axis. Comprises a zeolite-c ract & friable chloritic & zeo e. Lower contact at 60°.		10.2
95.0		BB				. Sand & lith clasts are roun oured zeolite- calcite-chlorit		7.7
ntly - Geolo	gy Legend			=			Quarry Code Legend	
Core Loss/	/Washout	Clay/Ash	Fill Fill	Tertiary Carbonaceous Mudston	e Tertiary Car	Greywacke Argillite	Brown/Soft P	it Run
	nglomerate	1				L1	Blue Brown	

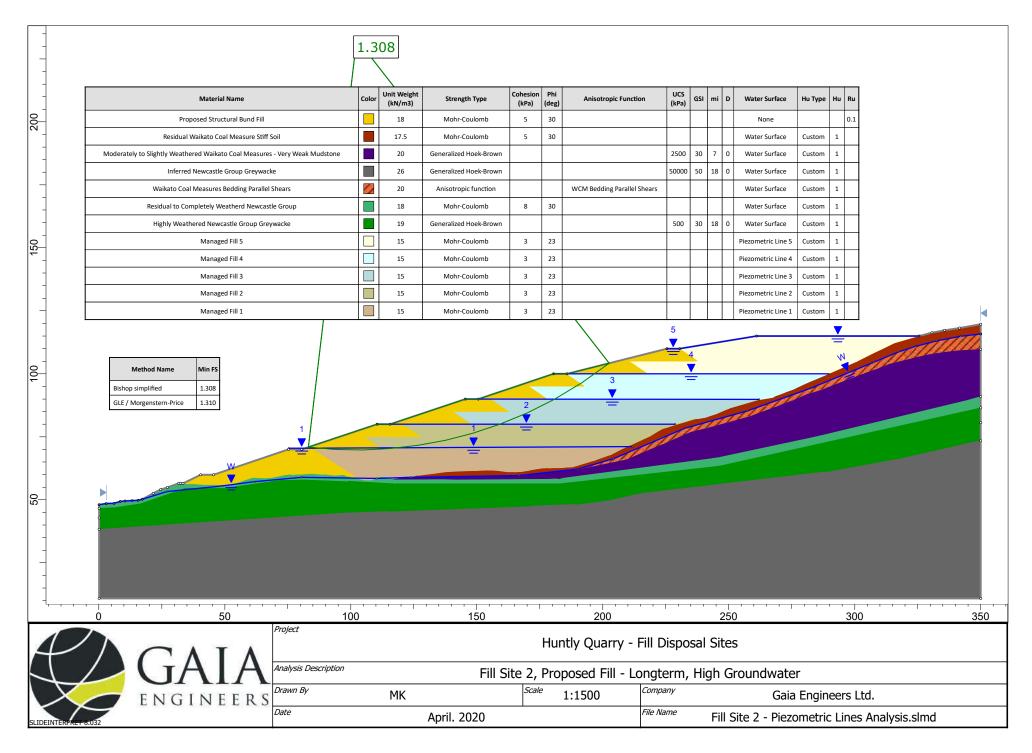
	Hole N	ame :H	Q006	Clie	ent: Ste	vensons Resource	s Limited	
Coll	ar Coordina	ates (Mt. Ec	den Circuit):	Collar X : 2699	9807.00	Collar Y :6399179.00	Collar Z	:99.50
Drilli	ing Compa	ny: Brown I	Brothers Ltd.	Drilled By: Ker	ry Brown	Logged By:	A Spa	rgo
Hole L	ength :100	0.00	Segment Start [Depth :96.53	Segm	ent End Depth :115.84	Scale 1	:100
Depth At	Geology Code	Quarry Code			Geology Desci	ription		Elevatior
-97.5	Gs	BB BL BL	Highly fract, fine sorted. Fract > 7 fract.	e-v.fine grained qu 100 per m, filled w	artz-lithic G	S. Sand & lith clasts are roun ploured zeolite- calcite-chlorit	ded & well e. Tr py on	5.3-
-100.0		BL						2.9
-102.5								0.5-
-105.0								-1.9-
-107.5								-4.3 [.]
-110.0								-6.8 [.]
-112.5								-9.2 [.]
-115.0 untly - Geolo	gy Legend						Quarry Code Legend	-11.6
Core Loss/	Washout	Clay/Ash		Tertiary Carbonaceous Mu		arbonaceous Sandstone Greywacke Argillite	Overburden	Dit Due
	臣			- 		<u> </u>	Brown/Soft F	ni kun
Greywacke Cor	nglomerate	Greywacke Chipw	acke Greywacke Sandst	one Greywacke Silt	stone Fault/	'Fault Zone Shear Zone	Blue	

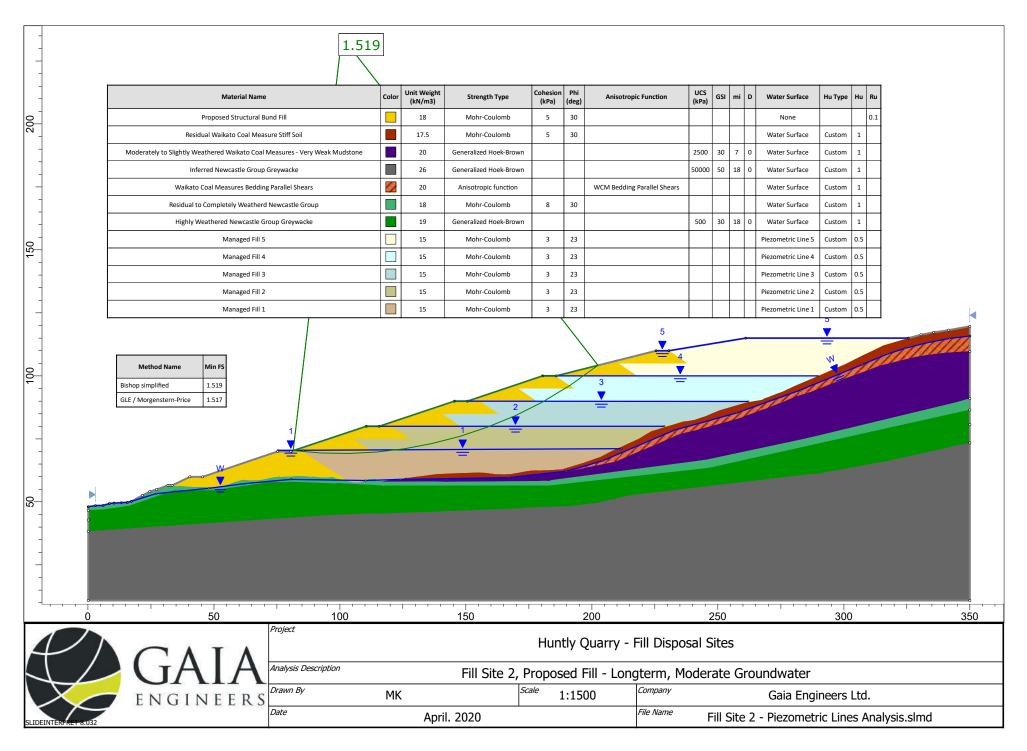
	Hole N	lame :H	Q007	Clie	ent: Ste	vensons Resourc	es Limited						
Colla	ar Coordin	ates (Mt. E	den Circuit):	Collar X : 2700	093.00	Collar Y :6399219.00	Collar Z	Z :107.50					
Drilli	ng Compa	ıny: Brown	Brothers Ltd.	Drilled By: Kerr	y Brown	Logged By:	A Spa	argo					
Hole L	ength : 100	0.00	Segment Start	Depth :0.00	Segm	nent End Depth : 19.31	Scale 1	I:100					
Depth At	Geology Code	Quarry Code			Geology Descr	ription		Elevatio					
		ОВ											
-2.5	el 	OB OB	Orange-brown, dark brown silty-sandy clay, soft, moist.										
2.0		ОВ						105.1					
- 0		ОВ	Light yellow-pin	kish, HW grey v.fin	e-fine claye	y sand & silt. V.stiff, Dry &	friable						
5.0		ОВ						102.7					
		ОВ											
7.5		OB OB						100.3					
-10.0	Gs	ОВ		weathered to claye limonite & Fe ox st		Ext weak, friable. Some ro	ock fragments	97.8					
		OB OB											
12.5		ОВ						95.4					
		ОВ											
·15.0		ОВ						93.0					
	Gs	OB OB	GS. Sections contextures of inter	mpletely weathered bedded fine-v.fine	l to clayey-s GS. Str join	silty soil. Very weak. Remer ted with Fe oxide & limonit	nant bedding e alt.						
17.5		ОВ						90.6					
		OB OB											
ntly - Geolog	gy Legend				D 20-	8	Ouarry Code Legend						
Core Loss/	Washout	Clay/Ash	Fill Fill	Tertiary Carbonaceous Mud	itone Tertiary Ca	arbonaceous Sandstone Greywacke Argilli							
	nglomerate	Greywacke Chipw	acke Greywacke Sandst	one Greywacke Silts	tone Fault/	Fault Zone	Blue Brown						

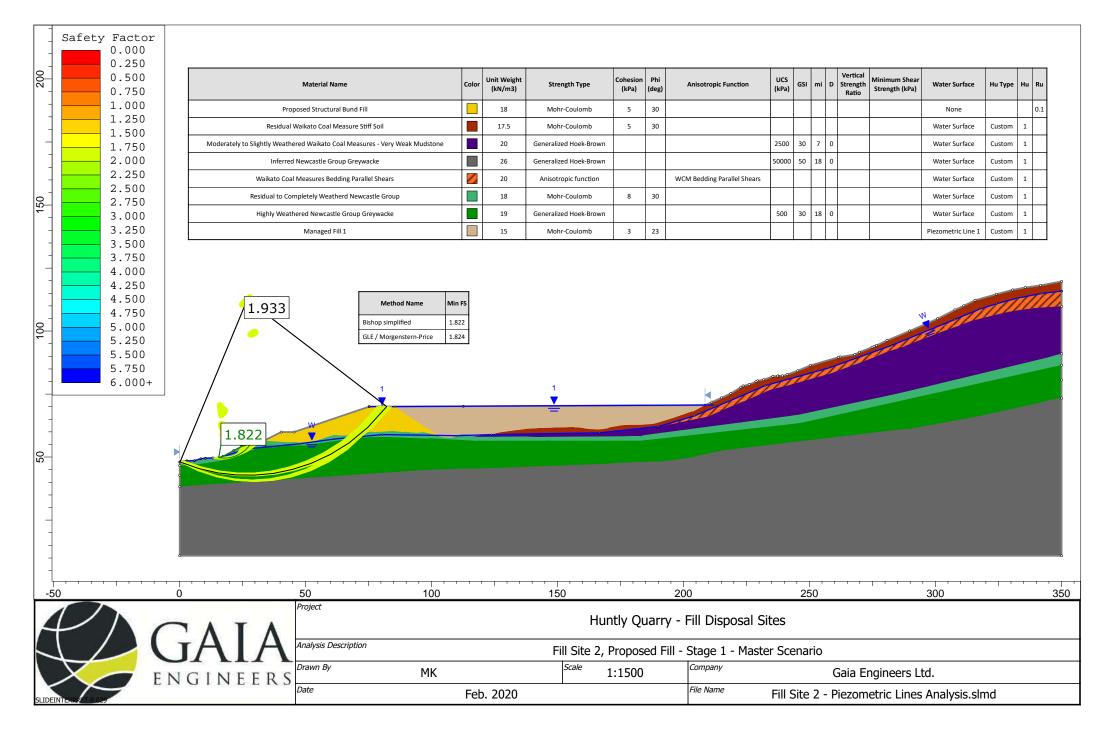
	Hole N	ame :H	Q007	Clie	ent: Ste	vensons Resource	s Limited						
Coll	ar Coordin	ates (Mt. Ed	den Circuit):	Collar X : 2700	093.00	Collar Y :6399219.00	Collar Z :	107.50					
Drilli	ing Compa	ny: Brown I	Brothers Ltd.	Drilled By: Kerr	y Brown	Logged By:	A Spa	argo					
Hole L	ength :100	0.00	Segment Start I	Depth :19.31	Segn	nent End Depth : 38.61	Scale 1	: 100					
Depth At	Geology Code	Quarry Code			Geology Desc	ription		Elevatio					
-20.0	Gs	OB OB	GS. Sections contextures of inter	mpletely weathered bedded fine-v.fine	l to clayey-s GS. Str joir	silty soil. Very weak. Remena ted with Fe oxide & limonite	int bedding alt.	88.2					
-22.5	Gs	BR BR BR	Bedded, v.weak fragmented.	-weak, GS. Str join	ted with Fe	oxide & limonite alteration. (GS highly	85.8					
-25.0		BR . BB						83.4					
-27.5		BB											
-30.0		BL BL BL											
-32.5	Gs	BL BL BL	grained, silt (po	Bedded, fine -v.fine grained GS. Interbedded quartz-lithic,fine-v fine sands and v.fine grained, silt (poss argillite), in discont pod like beds. Laminated. Str jointed with Fe ox & limonite alt. Minor fine white zeol veins & minor calcite.									
35.0		BL BL											
-37.5		BL BL BL						71.3					
intly - Geolo	gy Legend			= 1	244	F_1	Quarry Code Legend						
Core Loss/	Washout	Clay/Ash		Tertiary Carbonaceous Mud		Greywacke Argillite	Overburden Brown/Soft I	Pit Run					
			. .				Blue Brown	n null					
Greywacke Cor	nglomerate	Greywacke Chipw	acke Greywacke Sandst	tone Greywacke Silts	tone Fault/	/Fault Zone Shear Zone							

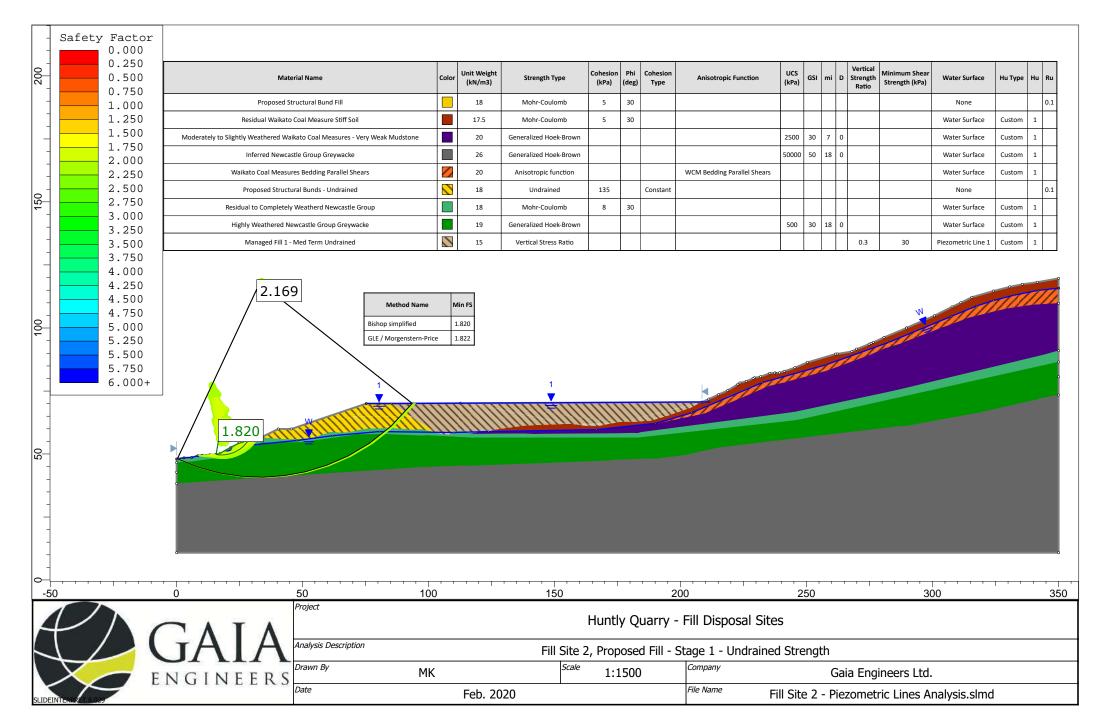
	Hole N	ame :H	Q007	Client: S	tevensons Resource	s Limited					
Colla	ar Coordin	ates (Mt. E	den Circuit):	Collar X :2700093.00	Collar Y :6399219.00	Collar Z :	107.50				
Drilli	ng Compa	ny: Brown	Brothers Ltd.	Drilled By: Kerry Brown	Logged By:	A Spa	rgo				
Hole Le	ength :100	0.00	Segment Start [Depth : 38.61 S	egment End Depth : 57.92	Scale 1	:100				
Depth At	Geology Code	Quarry Code		Geology	Description		Elevatio				
-40.0	GS	BL BL BL	grained, silt (pos		ed quartz-lithic,fine-v fine sands like beds. Laminated. Str jointeo ninor calcite.		68.9 [.]				
-42.5	BL IGS BL BL V.fine-fine grained GS. Laminated interbedded sequence of mod-well sorted, quartz -lithi GS and v.fine grained, clayey-silt. Fine GS beds up to 190mm. Beds com offset on v.fine micro faults. Jointed & x-cut by fine calcite & zeol veins										
-45.0		BL BL					64.0				
-47.5	Gs	BL BL BL	BL Bedded v.fine-fine GS. Laminated interbedded fine-med, mod-well sorted qz lithic GS & v.fine clayey-silt. Beds are often discont. GS str fragmented with joint surfaces thinely coated with cal zeol & coarse py clusters.								
-50.0											
-52.5		BL BL BL	V fine_fine_CS_1	aminated, interbedded v.f	c GS & v fine	56.8					
-55.0	Gs	BL	grained clayey-s		s are offset by fine micro faults,		54.4				
57.5		BL BL					52.0				
untly - Geolog Core Loss/		Clay/Ash		Tertiary Carbonaccous Mudistone	Fertiary Carbonaceous Sandstone	Quarry Code Legend Overburden Brown/Soft P Blue Brown	⁹ it Run				

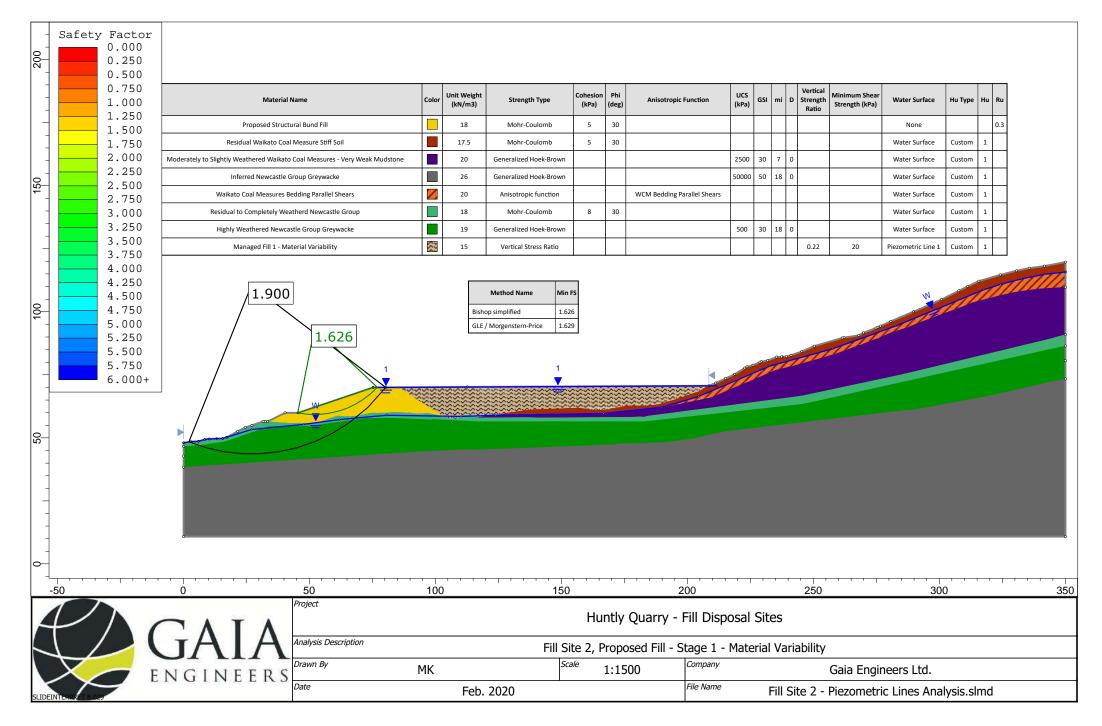
I	Hole N	ame :H	Q007	Cli	ent: Ste	vensons Resource	s Limited						
Colla	ar Coordina	ates (Mt. Ec	den Circuit):	Collar X : 2700	0093.00	Collar Y :6399219.00	Collar Z :	107.50					
Drilli	ng Compai	ny: Brown I	Brothers Ltd.	Drilled By: Ker	Logged By:	A Spa	rgo						
Hole Le	ength :100	0.00	Segment Start E	Depth :57.92	Segm	nent End Depth : 77.22	Scale 1	:100					
Depth At	Geology Code	Quarry Code			Geology Desci	ription		Elevation					
		BL											
-60.0		BL				fine, mod-well sorted qz-lithi		49.5 [.]					
	Gs	BL	grained clayey-s x-cut by fine cal	ilt, (possibly argill cite & zeo veins, o	ite). Beds ar ften with fin	e offset by fine micro faults, e py. Some sections s	com jointed &						
-62.5	BL 52.5. BL												
0		BL						47.1 [.]					
-65.0		BL						44.7 [.]					
00.0		BL	Bedded GS. mor	Bedded GS, mod-highly fractured, interbedded v.fine-fine grained, mod srted GS and									
	Gs	BL	v.fine, clayey-silt (possibly argillite) in fine or discont & pod like beds (flaser bedding?). Veined with fine (1mm) white-pink calcite (siderite?), zeolite. Vein surfaces										
-67.5		BL											
		BL											
-70.0		BL						39.9					
		BL											
-72.5		BL	Finely bedded G	S. Laminated inter	bedded v.fir	ne-fine, mod-well sorted, qz-	lithic GS &	37.5					
	Gs	BL	ccassionaly as fine, discont & v.fine (1mm), white-grey &										
-75.0		BL			35.1								
		BL											
ıntly - Geolog	y Legend	BL					Quarry Code Legend						
Core Loss/		Clay/Ash	Fill	Tertiary Carbonaceous Mu	adstone Tertiary C	arbonaceous Sandstone Greywacke Argillite	Overburden						
00/0 2033/		Jug, narr					Brown/Soft F	Pit Run					
• Greywacke Con	glomerate	Greywacke Chipw	acke Greywacke Sandsto	one Greywacke Silt	stone Fault/	Fault Zone	Blue Brown						

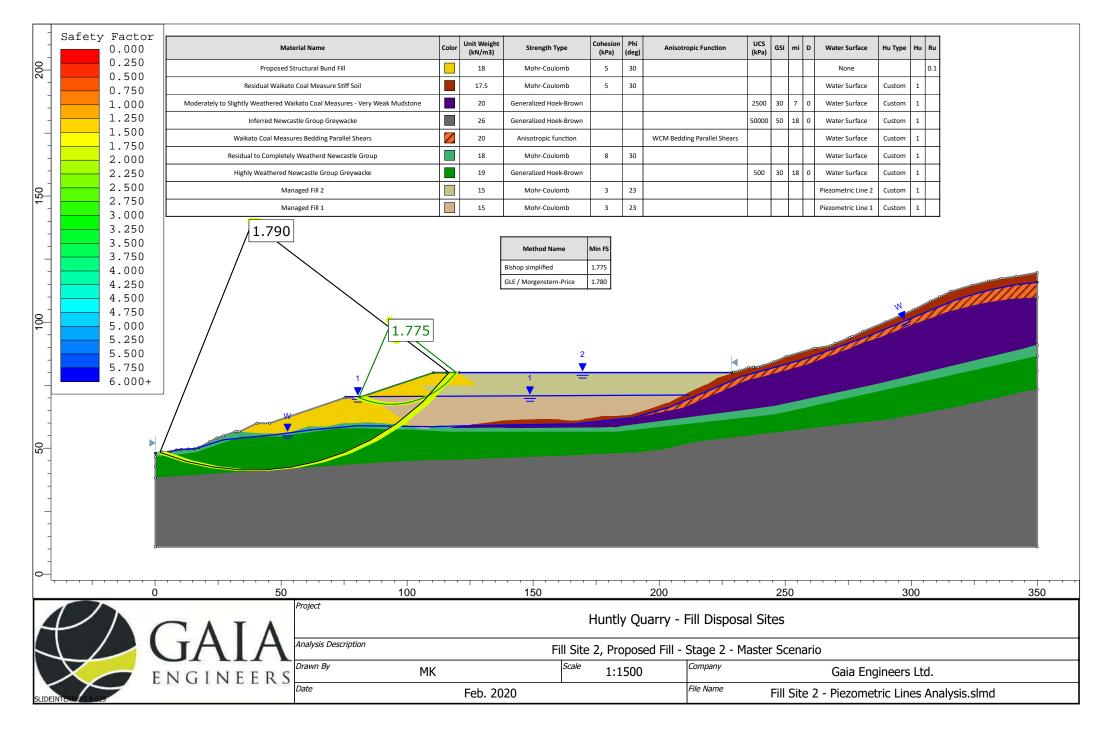

Drill Hole Log Project Name: Resource Drilling - Huntly (Dec-Mar 2006) Hole Name :HQ007 Client: Stevensons Resources Limited Collar Coordinates (Mt. Eden Circuit): Collar X :2700093.00 Collar Y :6399219.00 Collar Z :107.50 Drilling Company: Brown Brothers Ltd. Drilled By: Kerry Brown Logged By: A Spargo Hole Length : 100.00 Segment Start Depth : 77.22 Segment End Depth : 96.53 Scale 1:100 Geology Quarry Depth At Elevation Geology Description Code Code Gs Finely bedded GS. Laminated interbedded v.fine-fine, mod-well sorted, qz-lithic GS & v.fine grained, clayey-silt (possibly argillite), occassionaly as fine, discont & pod like beds (flaser bedding?). Occ fractured & veined with v.fine (1mm), white-grey & -80.0 30.2-Bedded GS, v.fine - fine grained, clayey-sandy-silt with minor v.fine white flecks (poss 82.5 Gs zeolite) diss within GS. Laminated & finely interbedded, well-mod sorted. Occ veined with 27.8^{-} v.fine white-grey zeolite-calcite veinlets. Occ fract. -85.0 25.4Finely bed GS. Mod fract. Laminated interbedded v.fine-fine, mod-well sorted, qz-lithic GS & v.fine grained, clayey-silt (possibly argillite), occ as fine, discont & pod like beds (flaser bedding?). Occ fractured & veined with v.fine (1mm), discont & pod -87.5 23.0-Gs Zone of intensive fracturing, faulting & veining of v.fine-fine grained, qz lithic GS Gs interbedded with clayey-silt (possibly argillite). Veins (up to 25mm) of white-grey, soft zeolite & calcite. Some minor pyrite. -90.0 20.6--92.5 18.2^{-1} Bedded fine grained GS. Laminated, interbedded qz-lithic, well-mod sorted GS, and v.fine Gs clayey-silt, poss argillite. Bedded laminanited to flaser like with some clay-silt in pod like beds. Some sections highly fractured with fracturing less com after 97m -95.0 15.7^{-} /erburden Clay/Ash Core Loss/Washout Fill Greywacke Argillite Brown/Soft Pit Run Blue Brown Fault/Fault Zone icke Chipv Greywacke Siltston hear Zone Blue

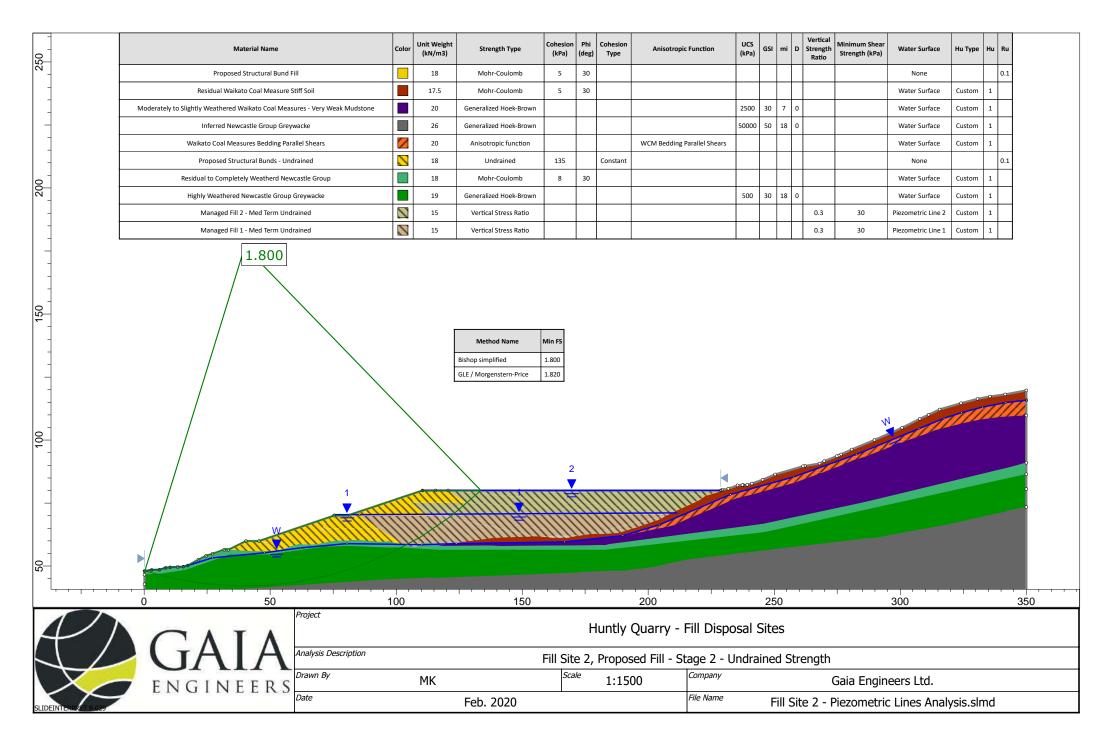

	Hole N	ame :H	Q007	Cli	ent: Ste	vensons Resource	s Limited					
Coll	ar Coordina	ates (Mt. Ec	den Circuit):	Collar X : 270	0093.00	Collar Y :6399219.00	Collar Z :	107.50				
Drilli	ing Compa	ny: Brown I	Brothers Ltd.	Drilled By: Ker	ry Brown	Logged By:	A Spa					
Hole L	ength :100	0.00	Segment Start	 Depth :96.53	Segm	ent End Depth :115.84	Scale 1					
Depth At	Geology Code	Quarry Code		Geology Description								
		BL										
-97.5		BL						13.3				
	Ğs	PI	clayey-silt, poss	s argillite. Bedded I	aminanited t	ed qz-lithic, well-mod sorted to flaser like with some clay-s						
		BL	beds. Some sec	tions highly fractu	ed with frac	turing less com after 97m						
		BL										
100.0								10.9				
-102.5								8.5				
-105.0								6.1				
-107.5								3.7				
-110.0								1.2				
-112.5								-1.2				
-115.0								-3.6				
ıntly - Geolo	gy Legend						Quarry Code Legend					
Core Loss/	1 1 1	Clay/Ash		Tertiary Carbonaceous M		arbonaceous Sandstone Greywacke Argillite	Overburden					
	17 17 18					<u> </u>	Brown/Soft P Blue Brown	it Run				
Greywacke Co	nglomerate	Greywacke Chipwa	acke Greywacke Sands	tone Greywacke Silf	stone Fault/	'Fault Zone Shear Zone	Bide Brown					

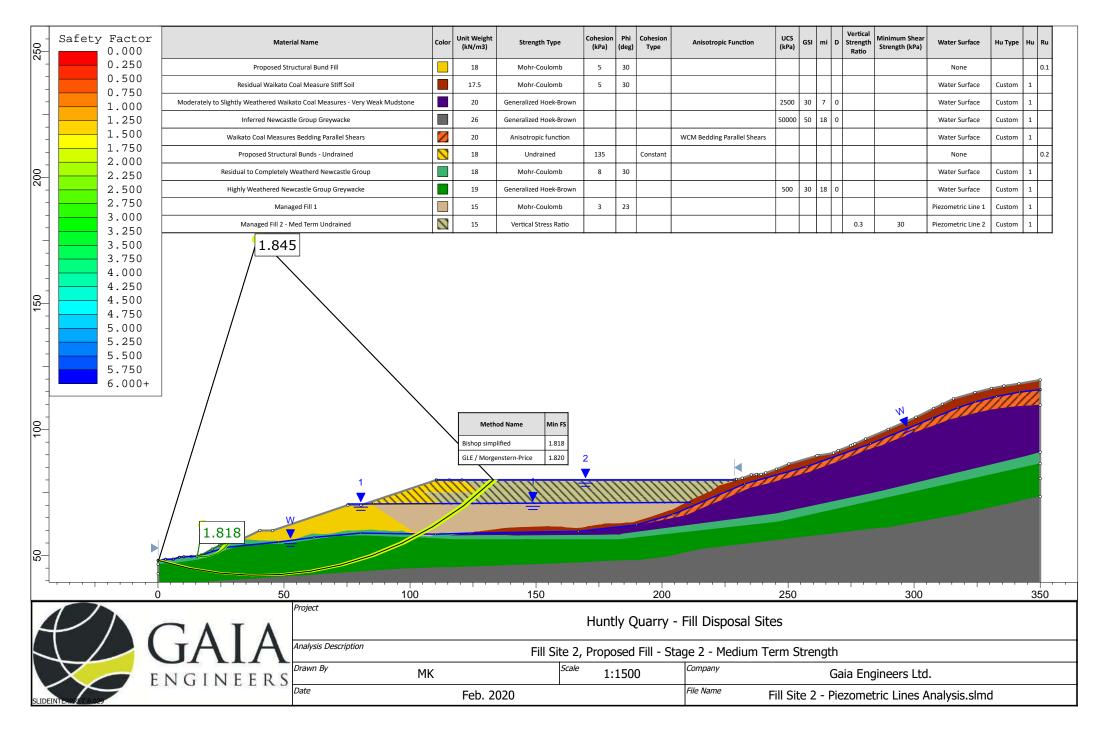

APPENDIX C – Slope Stability Analysis Outputs

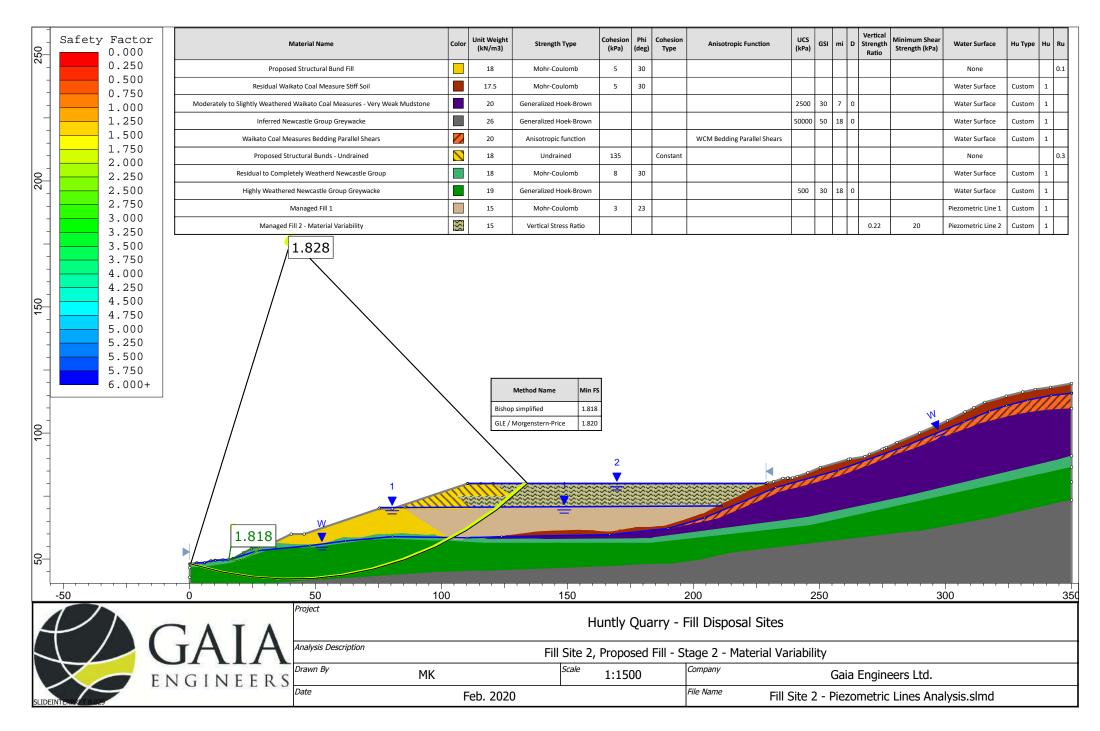

Description	No. Sheets:
Slope Stability Analysis Outputs	25

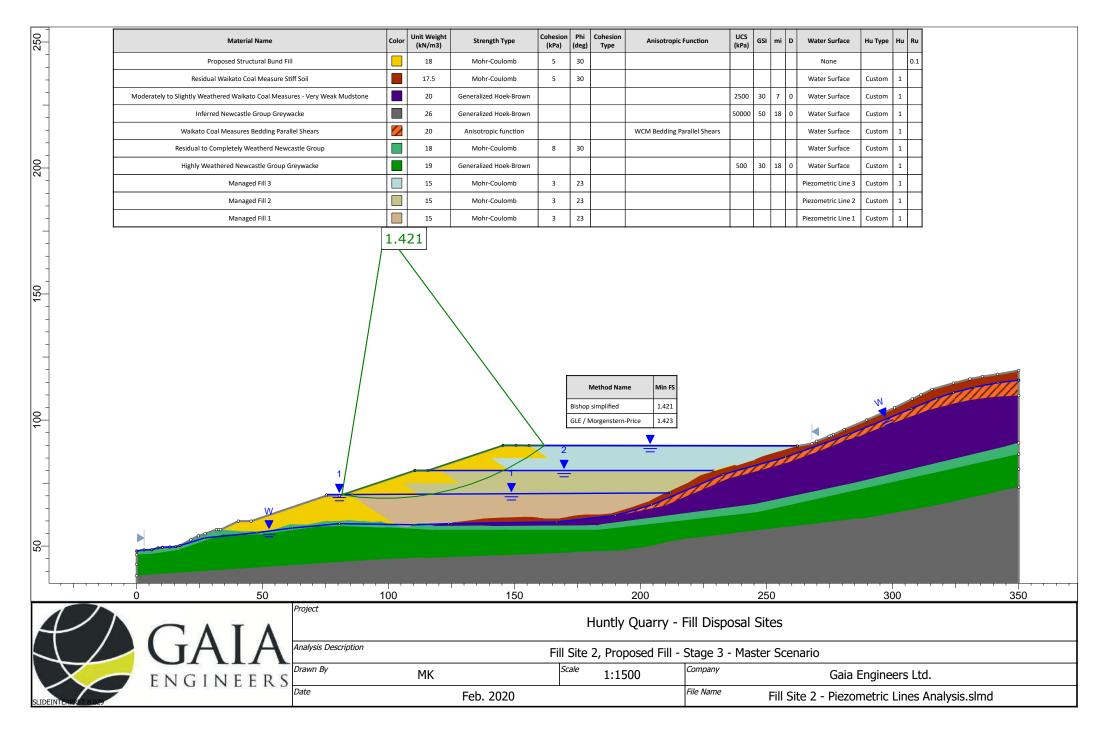

200																		
-														0.	915			
-		Material Name		Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Anisotropic Function	UCS (kPa)	GSI	mi C		/ater rface Ru				
150		Residual Waikato Coal Meas	sure Stiff Soil		17.5	Mohr-Coulomb	5	30					N	lone 0				
		Moderately to Slightly Weathered Waikato Coal	Measures - Very Weak Mudstone		20	Generalized Hoek-Brown				2500	30	7 0	D N	lone 0		\mathbf{i}		
-		Inferred Newcastle Group	Greywacke		26	Generalized Hoek-Brown				50000	50	18 0	D N	lone 0	1			
		Waikato Coal Measures Beddin	g Parallel Shears		20	Anisotropic function			WCM Bedding Parallel Shears				N	lone 0	1	\backslash	\	L.
		Residual to Completely Weatherd	Newcastle Group		18	Mohr-Coulomb	8	30					N	lone 0	1		\mathbf{n}	
-		Highly Weathered Newcastle G	roup Greywacke		19	Generalized Hoek-Brown				500	30	18 0	D N	lone 0]			111
			Method Name Min FS Bishop simplified 0.915 GLE / Morgenstern-Price 0.917		0 0., <u>com</u>			∞ 0 - c										
-		0 50	10	0		150		· ·	200	1 1		2	250			300		350
6	P	GAIA	Project Analysis Description						tly Quarry - Fill D 2, Existing Slope -					0				
			Drawn By	64	V		Scale			Company Gaia Engineer						incore 1 td		
	\sim	ENGINEERS	Date	M				1	:1500 Compa									
SLIDE	INTERPRET 8.029				F	eb. 2020							F	-ill Site	e 2 - Bulk	Pore Press	ure.slmd	

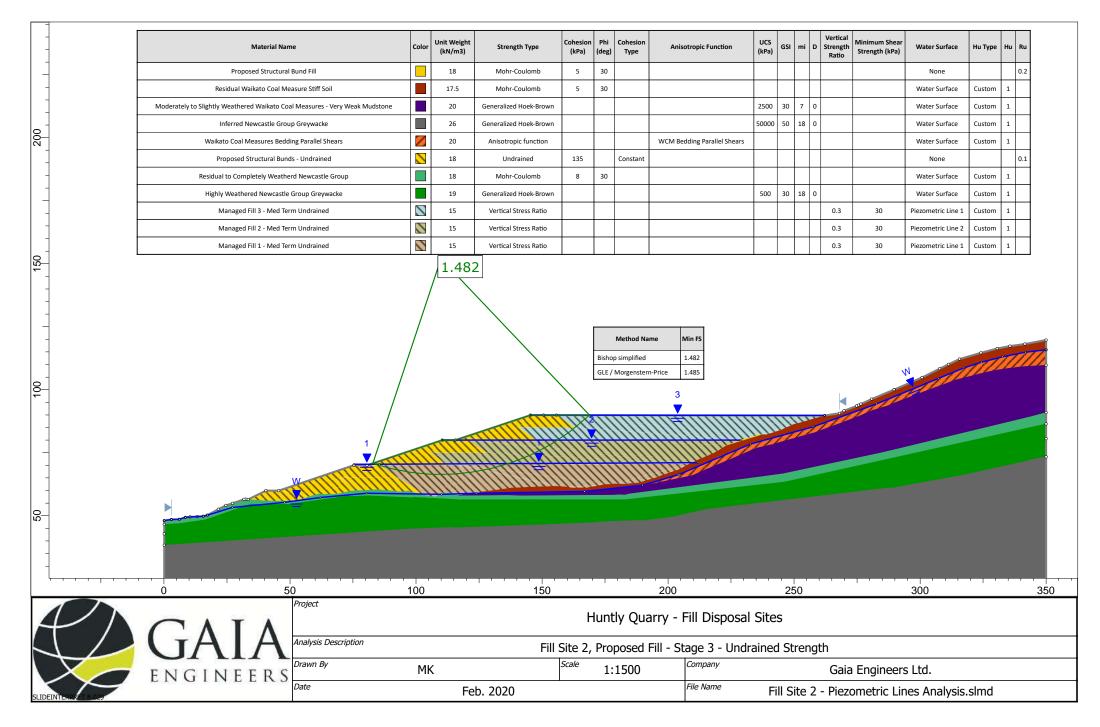


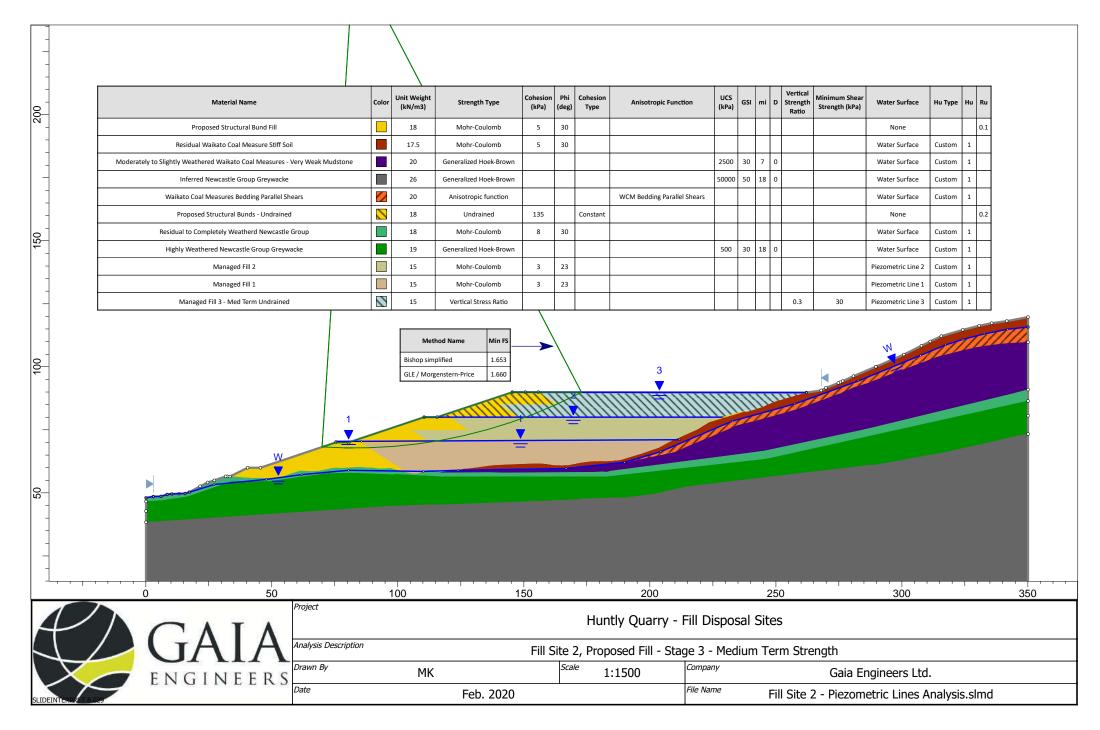


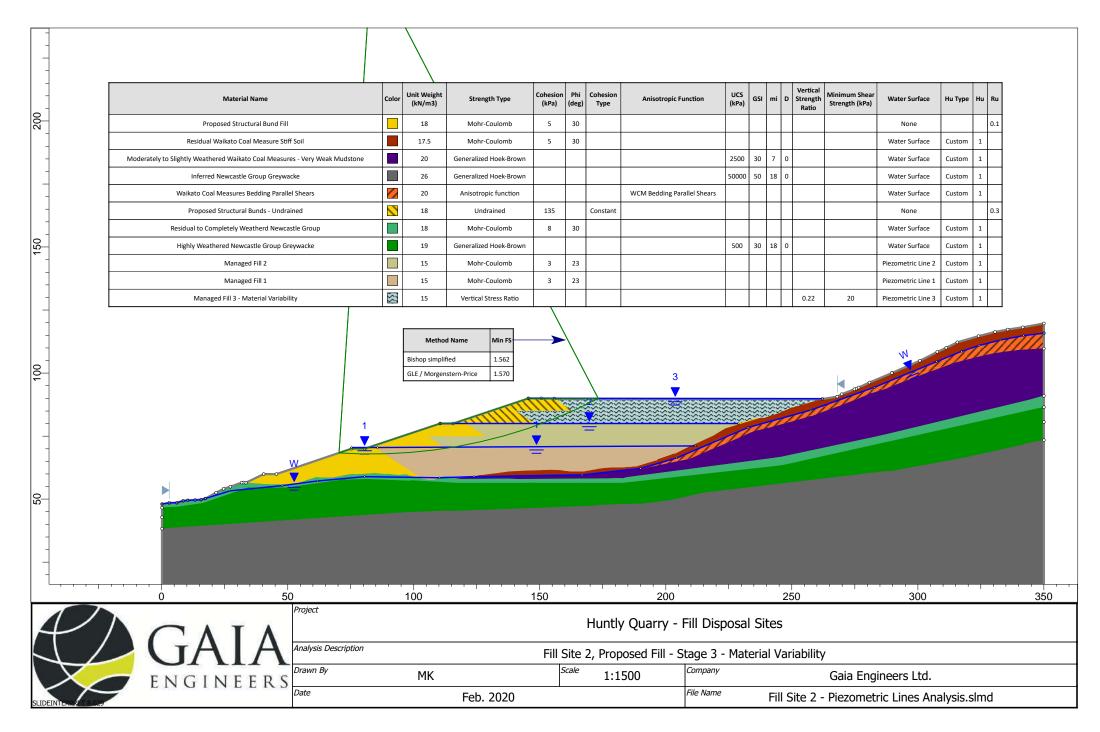


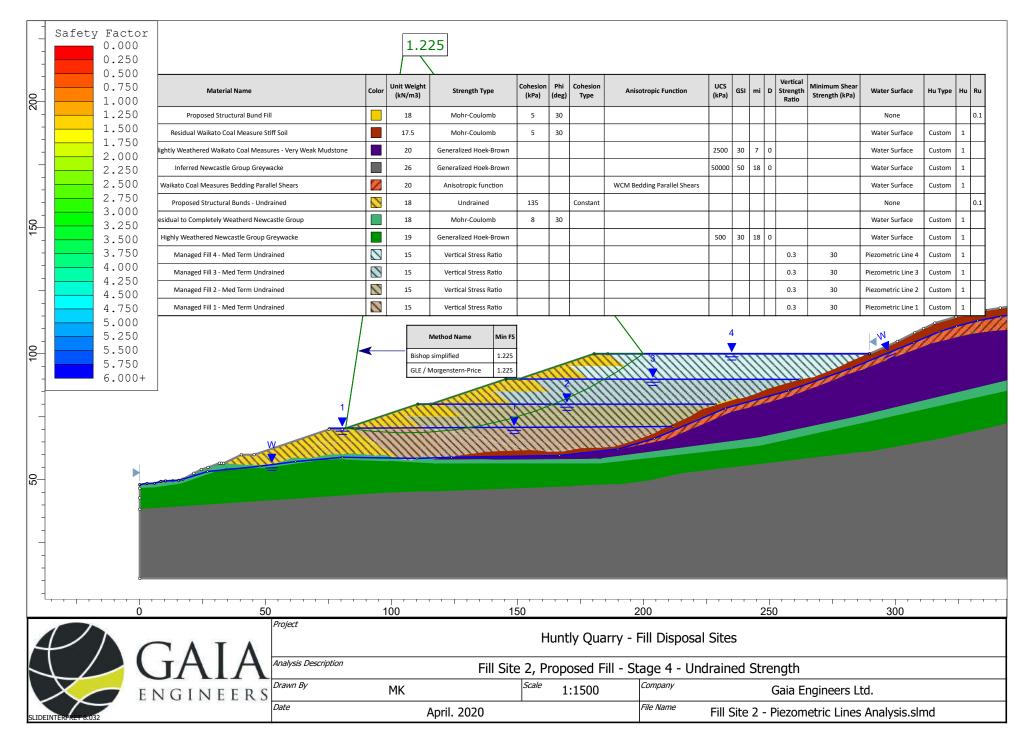


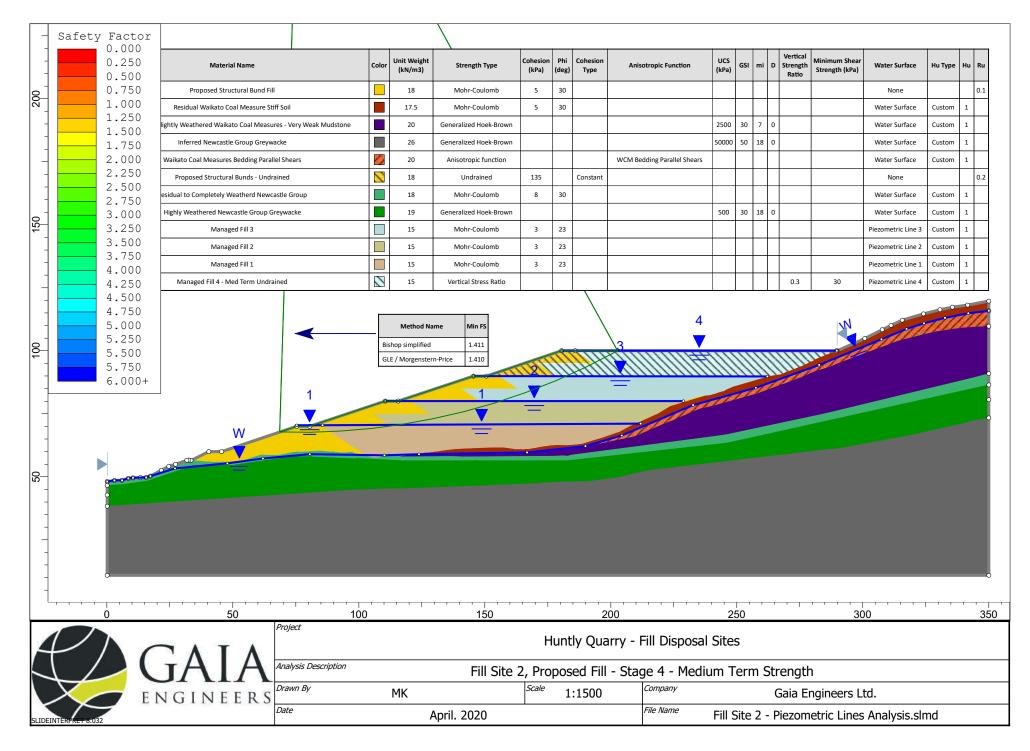


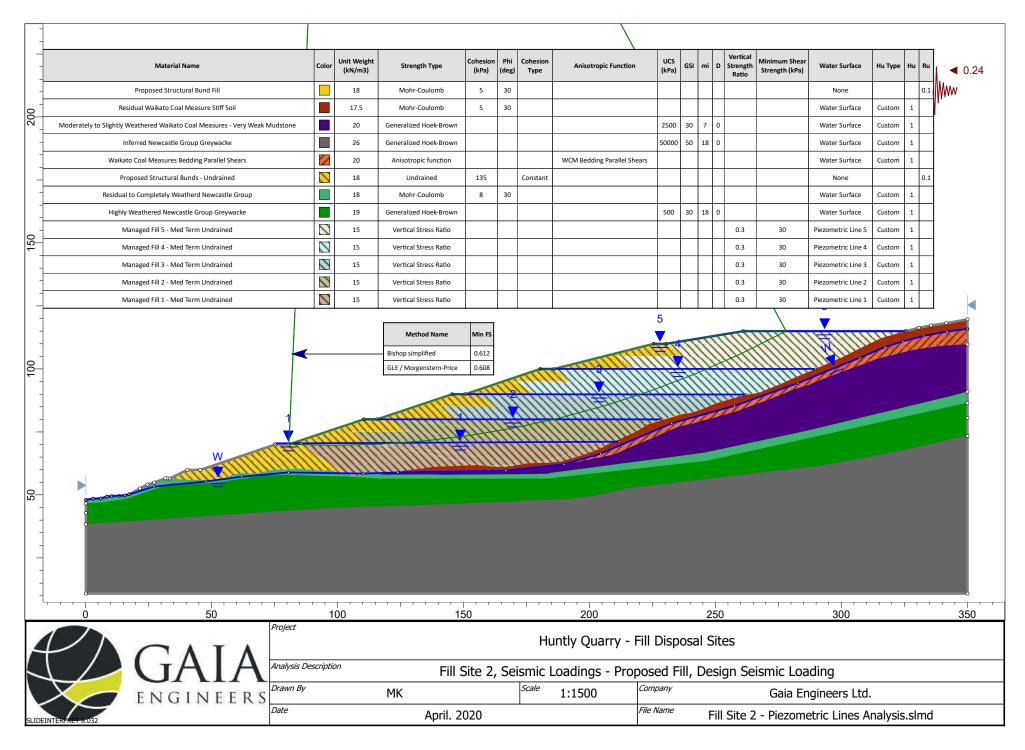


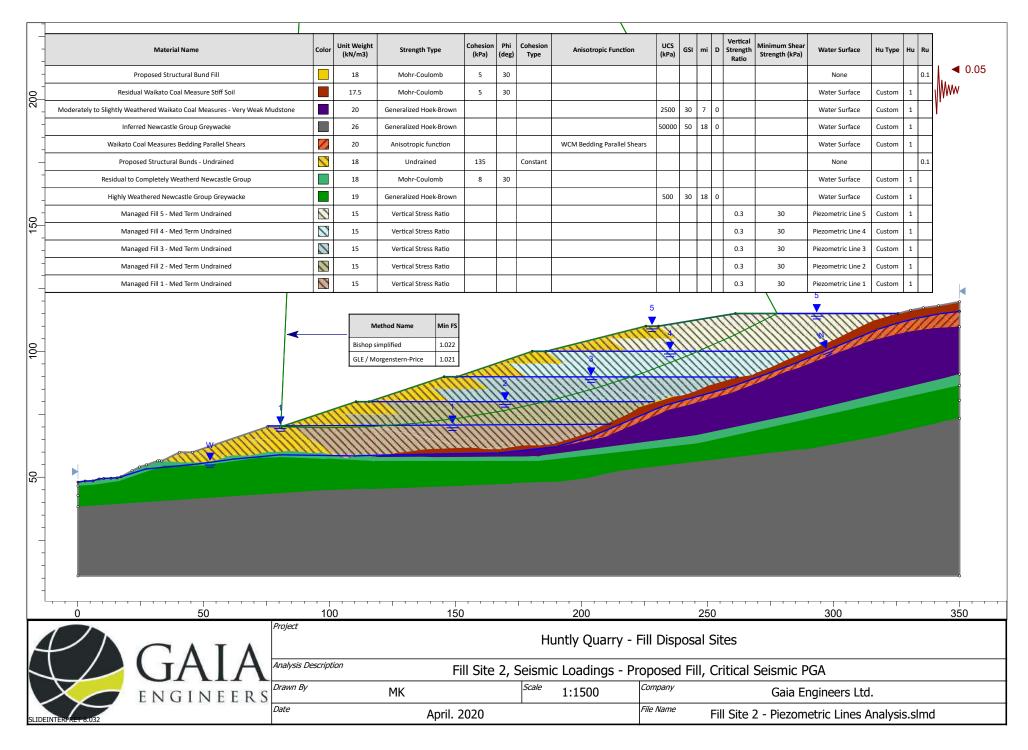


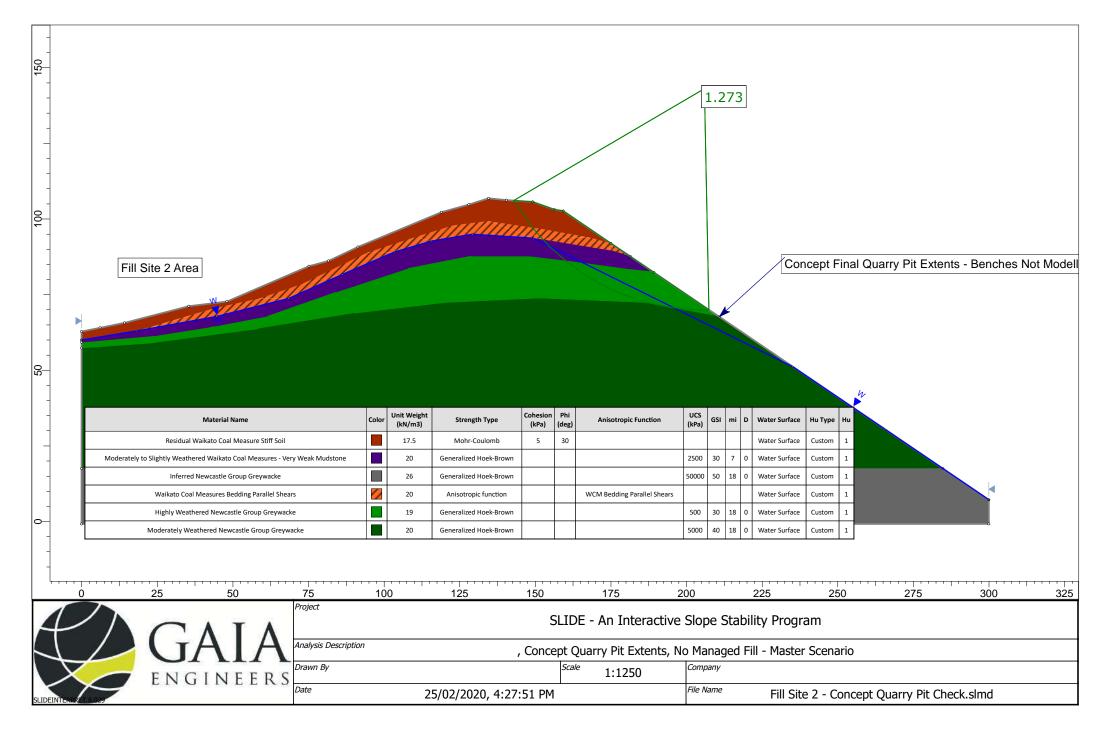


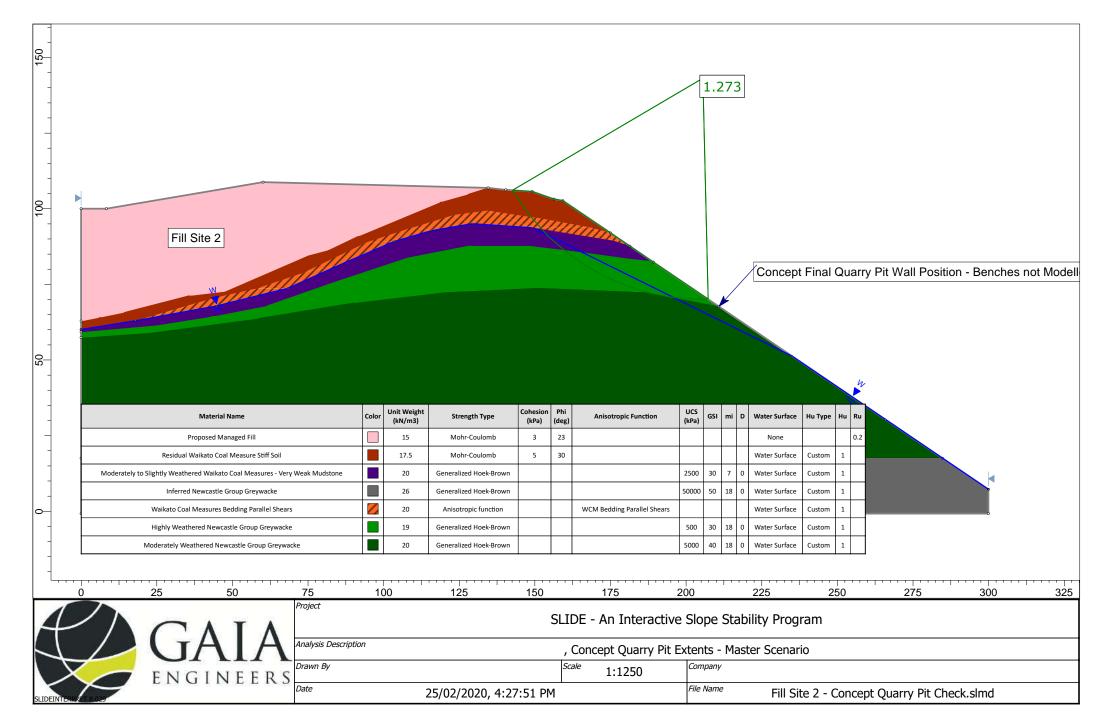







Material Name	Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Anisotropic Function	UCS (kPa) G	SI mi	D	Water Surface	Ни Туре	Hu	Ru
Proposed Structural Bund Fill		18	Mohr-Coulomb	5	30					None			0.1
Residual Waikato Coal Measure Stiff Soil		17.5	Mohr-Coulomb	5	30					Water Surface	Custom	1	
Moderately to Slightly Weathered Waikato Coal Measures - Very Weak Mudstone	e 📕	20	Generalized Hoek-Brown				2500 3	0 7	0	Water Surface	Custom	1	
Inferred Newcastle Group Greywacke		26	Generalized Hoek-Brown				50000 5	0 18	0	Water Surface	Custom	1	
Waikato Coal Measures Bedding Parallel Shears		20	Anisotropic function			WCM Bedding Parallel Shears				Water Surface	Custom	1	
Residual to Completely Weatherd Newcastle Group		18	Mohr-Coulomb	8	30					Water Surface	Custom	1	
Highly Weathered Newcastle Group Greywacke		19	Generalized Hoek-Brown				500 3	0 18	0	Water Surface	Custom	1	
Managed Fill 4		15	Mohr-Coulomb	3	23					Piezometric Line 4	Custom	1	
Managed Fill 3		15	Mohr-Coulomb	3	23					Piezometric Line 3	Custom	1	
Managed Fill 2		15	Mohr-Coulomb	3	23					Piezometric Line 2	Custom	1	
Managed Fill 1		15	Mohr-Coulomb	3	23					Piezometric Line 1	Custom	1	
	10	0	150)		200	.			250	• •		300
0 50	Project Huntly Quarry - Fill Disposal Sites												
				Fill	Site						ario		
GAIA Project	Description		ли	Fill	Site	2, Proposed Fill -		4 -		laster Scen		En	aincore Ltd
Froject GAIA	Description		1K April. 202			2, Proposed Fill -	Stage	4 -		laster Scen	Gaia		gineers Ltd. tric Lines Analysis.slmd





													_					
	Material Name		Color	Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Cohesion Type	Anisotropic Function	UCS (kPa)	GSI	mi	Vertical D Strength Ratio	Minimum Shear Strength (kPa)	Water Surface	Ни Туре	Hu	Ru
	Proposed Structural Bund Fill			18	Mohr-Coulomb	5	30								None			0.1
	Residual Waikato Coal Measure Stiff So	il		17.5	Mohr-Coulomb	5	30								Water Surface	Custom	1	
Mod	lerately to Slightly Weathered Waikato Coal Measures -	Very Weak Mudstone		20	Generalized Hoek-Brown					2500	30	7	D		Water Surface	Custom	1	
	Inferred Newcastle Group Greywacke			26	Generalized Hoek-Brown					50000	50	18	D		Water Surface	Custom	1	
	Waikato Coal Measures Bedding Parallel Sh	lears		20	Anisotropic function				WCM Bedding Parallel Shears						Water Surface	Custom	1	-
	Proposed Structural Bunds - Undrained	1		18	Undrained	135		Constant							None			0.3
	Residual to Completely Weatherd Newcastle	Group		18	Mohr-Coulomb	8	30								Water Surface	Custom	1	
	Highly Weathered Newcastle Group Greyw	acke		19	Generalized Hoek-Brown					500	30	18	D		Water Surface	Custom	1	1
	Managed Fill 3			15	Mohr-Coulomb	3	23								Piezometric Line 3	Custom	1	i —
	Managed Fill 2			15	Mohr-Coulomb	3	23								Piezometric Line 2	Custom	1	
	Managed Fill 1			15	Mohr-Coulomb	3	23								Piezometric Line 1	Custom	1	
	Managed Fill 4 - Material Variability		33	15	Vertical Stress Ratio								0.22	20	Piezometric Line 4	Custom	1	
8000	• • • • • • • • • • • • • • • • • • •			p simplified	1.358 rice 1.367													
Ö	50	Project	100		150				200		25				300			
Z [GAIA	Analysis Description			F: 11 (Cite 2			uarry - Fill Dispos									
	> \ \ \ \ \ \ \ \ \ \ \	Fill Site 2, Floposed Fill - Stage 4 - Material Valiability																
\checkmark		Drawn By		MIZ		Sca	le	1.150	Company				C-:-	Engineer	1+4			
	ENGINEERS	Drawn By Date		MK	April. 2020	Sca	le	1:150	0 Company File Name					Engineers	ELtd.			

Appendix D – Safety in Design (SiD) Table

Diel: Acces	ssment Matrix	Consequence (Impact)										
RISK ASSES	ssment matrix	Negligible	Minor	Moderate	Major	Severe						
	Very Likely	High (11)	High (16)	Extreme (20)	Extreme (23)	Extreme (25)						
Probability of Occurance	Likely	Moderate (7)	High (12)	High (17)	Extreme (21)	Extreme (24)						
(Likelihood)	Possible	Low (4)	Moderate (8)	High (13)	Extreme (18)	Extreme (22)						
	Unlikely	Low (2)	Low (5)	Moderate (9)	High (15)	Extreme (19)						
	Rare	Low (1)	Low (3)	Moderate (6)	High (14)	High (16)						

			Probability (Likelihood) Table					
		Probabilit	y De	scription				
Impact	Negligible	Minor	Moderate	Major	Severe	Very Likel	Probability of occurance > 75%	More than 1 event per month
Safety	Would cause minor injuries that are able to be treated on site with no long-term effects	Would cause minor casualties that require medical attention off-site with no long-term effects	Would cause casualties that require hospitalisation with no long-term effects	Would cause serious casualties resulting in the long-term physical impairment of personnel	Would cause loss of life	Likely	Probability of occurance ~ 50% - 75%	More than 1 event per year
Environment & Heritage	Would cause limited short term damage. Little resourses required to rectify	Would cause limited medium term damage. Rectification occurs from within budget	Would cause some environmental damage requiring the allocation of some resources to rectify	Would cause extensive environmental damage requiring significant resources to rectify	Would cause catastrophic environmental damage leading to significant fines and resources to rectify or unable to rectify	Possible	Probability of occurance ~ 25% - 50%	1 event per 1 to 10 years
Reputation	Negligible damage to reputation	External reputation minimally damaged. Little effort or expense required to recover	External reputation damaged: some effort and expense required to recover	External reputation severely damaged: considerable effort and expense required to recover	External reputation irrevocably destroyed or damaged	Unlikely	Probability of occurance ~ 10% - 25%	1 event per 10 to 100 years
						Rare	Probability of occurance < 10%	Less than 1 event per 100 years

Risk Status	Definition
Open	Safety risk identified. Treatments yet to be fully considered.
Open - Managed	Treatments have been identified but not yet specified by the Designer.
Open - Specified	Treatments have been specified within design documents.
Closed - Eliminated	Treatments have been specified and have eliminated the risk.
Closed - Transferred	Treatments have been specified. Risk transfered to the Builder.
Cancelled	Risk cancelled. Situation no longer exists.

Hazard ID	Raised By	Hazard Description	Potential Cause	Potential Consequence	Consequence (A)	Likelihood (A)	RISK (A)	Controls Incorporated in Design	Consequence (R)	Likelihood (R)	RISK (R)	Status	Construction Controls Operation and Maintenance Controls
DATE PRINTED	Huntly Quarry - Fill Site 2 Note: Reasonable steps have been taken to identify unusual and significant risks and hazards as part of the Safety in Design aims to identify hazards and risks relevant to the design that arise in the construction, operation and maintenance of the asset, and where reasonably practicable, to eliminate or mitigate and/or communicate these risks. The Builder is responsible for man the unusual hazards and risks relevant to the design that arise in the construction, operation and maintenance of the asset, and where reasonably practicable, to eliminate or mitigate and/or communicate these risks. The Builder is responsible for man the unusual hazards and risks relevant to the design that arise in the construction, operation and maintenance of the asset.												
Hazard ID	Raised By		Potential Cause	the usual hazards and risks normally Potential Consequence		ss of construction, oper ssessed Risk	ation and main	tenance of the asset. Controls Incorporated in Design	R	esidual Risk		Design Status	s Construction Controls Operation and Maintenance Controls
Hazard ID	Raised By	Hazard Description	Potential Cause	Potential Consequence	Consequence	Likelihood	RISK	Gaia Engineers Design Scope only	Consequence	Likelihood	RISK	Design Status	Construction Controls Construction and Maintenance Controls
1	Gaia	Earth Moving Machinery, Public Vehicles, Pedestrians	Collisions between large earth moving machinery, pedestrians and public vehicles.	Injury or possible death. Damage to plant.	Severe	Possible	Extreme (22)	Nil	Severe	Rare	High (16)		Site specific hazard identification plan developed and implemented by Contractor during construction and filling stages (issued and communicated to staff and outside users at site inductions and weekly tool box meetings.
2	Gaia	Dust	High wind, dry conditions and movement of earth moving machinery	Nuisance to workers and surrounding quarry neighbours	Negligible	Very Likely	High (11)	พ่ไ	Negligible	Unlikely	Low (2)		Develop dust mitigation plan. Appropriate PPE worn. Water carts for dust control. Consider sprinkler system for more sensitive areas. N/A
3	Gaia	Poor Access	Access to areas not currently served by haul roads	Becoming stuck	Negligible	Possible	Low (4)	Nil	Negligible	Possible	Low (4)		Access and haul road design to be addressed by Contractor in discussion with the Supervising Geotechnical Engineer.
4	Gaia	Unauthorised civilian access to Fill area.	Inadequate measures to warn or prevent people from entering managed fill works area	Injury or Death	Severe	Possible	Extreme (22)	Nil	Severe	Rare	High (16)		Provide fencing and warning signage. Restrict access to construction areas. Site specific hazard identification plan developed and implemented by Contractor.
5	Gaia	Machine roll or damage	Trafficability of ground where over-wet soil at or near the surface, and/or ground uneven	Injury to personnel Damage to equipment	Moderate	Possible	High (13)	Fill specfications provided to assist with improved trafficability	Moderate	Possible	High (13)	Open - Managed	Trained and competent operators under the appropriate supervision operating machinery at all times.
6	Gaia	Working at edges of steep embankments. Plant or persor working at crest of embankment.	Plant or person falling down embankment slope and/or injury to personnel	Injury to personnel Damage to equipment	Major	Possible	Extreme (18)	Slopes designed with conservative configurations.	Major	Unlikely	High (15)	Open - Managed	Trained and competent operators under supervision of experienced N/A managers Establishment of fall protection barriers at the crest of steep slopes
7	Gaia	Failure of Embankments/Toe Buttress/Bund	Adverse ground conditions, adverse groundwater conditions and seismic events post construction.	Failed material impacts person or plant causing serious injury or possibly death. Failed material impacts surrounding environment.	Major	Possible	Extreme (18)	Slope stability, groundwater analyses and sensitivity analysis. Embankments/to buttresses designed with suitably conservative parameters and configurations. Monitoring of ground conditions during construction.	Major	Rare	High (14)	Open - Specified	Request regular inspections by Supervising Geotechnical Engineers confirm stability.
8	Gaia	Adverse/unforeseen ground conditions	May cause slope instability if high steep slop formed in adverse ground.	^{es} Injury or possible death	Severe	Possible	Extreme (22)	Excavation of high steep slopes not anticipated during construction. Reviewed ground conditions as stripping progresses through regular monitoring.	Severe	Rare	High (16)	Open - Specified	Regular request inspections by Supervising Geotechnical Engineers N/A
9	Gaia	Contaminated soil encountered during excavation.	Workers may encounter contaminated soil during excavation.	Sickness/Health Impact	Moderate	Likely	High (17)	Provide records of where excavation of contaminated soil occurs Waste is to be disposed of appropriately. All plant and equipment shall be cleaned and decontaminated.	Moderate	Rare	Moderate (6)	Open - Managed	Site Specific contamination control plan. Appropriate PPE worn at all times.

