In the matter of the Resource Management Act 1991

and

in the matter of the hearing (Stage 1) by the

Waikato District Council on the Proposed Waikato District Plan

Statement of Evidence

Michael Carter, representing Raglan Geotech

1: Declaration

- I, Michael Carter, representing my private consultancy, Raglan Geotech, hereby verify that:
 - 1: I was engaged by Terra Firma Resources Ltd to conduct geotechnical assessments on the following locations:

Lot 1 DPS 61669. Weavers Crossing, Huntly

Pt Lot 2, Lot 1, DPS 61669, Pt Sec 1 SO 58281

& Allot 9C SO 34206. 137 Rotowaro Rd, Huntly

(Here referred to as 'Puketirini')

- 2: The topic I addressed was the suitability of the above-defined sites for residential and/or Village Zone zoning and development.
- 3: I have read and agree to comply with the Environmental Court Code of Conduct for Expert Witnesses.
- 4: Testing methodology and calculations on which I make my geotechnical interpretations comply with official NZ engineering standards and guidelines.
- 5: All the field test data from which I establish some of the here-expressed interpretations were acquired by myself.
- 6: I confirm that I have made clear which facts and matters referred to in in this report are within my own knowledge and which are not. Those that are within my knowledge I confirm to be true. The opinions I have expressed represent my true and complete professional opinion on which the matters to which they refer.

Michael Carter: CMEngNZ(PEngGeol) Reg no: 253333

Date: 10 02 2021

2: Tertiary Qualifications

1: My tertiary qualification is MSc., Earth Science, University of Waikato 2003.

3: Industry Registrations

1: My professional body registration is CMEngNZ(PEngGeol): Chartered Member, Engineering New Zealand, Professional Engineering Geologist. Reg no: 253333.

4: Relevant Academic Research

1: My relevant research is MSc. Earth Science, the Thesis topic covering the: stratigraphy and lithology of the Te Kuiti Group sequence, within which the Huntly Coal Measures belong.

5: Relevant experience

1: My relevant experience is 87 geotechnical investigations and assessments in the Western Waikato region.

6: Career record

1: I have had no disputes or insurance claims relating to my geotechnical assessments.

7: Basis on which my interpretations and opinions are established

1: My geotechnical interpretations are based on:

Published literature

Historical records and photographs

Direct field testing

Computer analysis

Field observations

My training and experience

8: Assessments objective

8.1: Weavers Crossing

1: My objective was to provide the geotechnical component of a full subdivision application as required by Waikato District Council. Refer Attachment 1.

8.2: Puketirini

- 1: My objective was to identify any constraints relating to ultimate bearing capacity that would render the residential subdivision concept untenable. Refer Attachment 2.
- 2: Due to the need for land surface displacement monitoring, I did not address surface settlement and overall stability in this assessment.

9: Summary of the geotechnical assessment interpretations

9.1: Weavers Crossing

- My interpretation is that this site is comprised of soils considered suitable for residential construction, with minimal requirement for specific engineering design of foundations. Groundwater is not expected to impact development. Environmental impact is expected to be minimal providing regulatory controls are adhered to.
- 2: I predict that slow-rate retreat of an embankment on the adjoining Weavers Crossing road could impact the property over a 50-year time-period.
- 3: I find that no other potential hazards of significant impact are apparent.
- 4: I found no features of cultural significance during this investigation.

9.2: Puketirini

- 1: My interpretation is that this site is comprised of relocated fill of highly variable geomechanical and lithological properties. Ultimate bearing capacity at test locations in the NE sector, constituting ~ 70% of the total area, is considered adequate for the construction of residential buildings. Ultimate bearing capacity at test locations in SW sector indicates that significant specific engineering of building foundations would be required.
- 2: My observations were that groundwater located in 3 boreholes were at elevated levels in relation to proximal waterbodies. The relative levels within these boreholes are irregular, indicating that groundwater is yet to reach a state of equilibrium. This is probably a reflection of low permeability barriers restricting water migration.

<u>Attachments</u>

Attachment 1: Preliminary Geotechnical Assessment Lot 1 DPS 61669 Weavers Crossing

Attachment 2: Preliminary Geotechnical Investigation 137 Rotowaro Road

Attachment 1:

Preliminary Geotechnical Assessment Lot 1 DPS 61669 Weavers Crossing

Preliminary Geotechnical Assessment

Lot 1 DPS 61669

Weavers Crossing

Huntly

25 01 2021

Raglan Geotech

Michael Carter CMEngNZ (PEngGeol)

Raglan

Geotechnical Assessment Lot 1 DPS 61699 Huntly Raglan Geotech 238 Waimaori Rd Raglan

This investigation has been conducted according to relevant New Zealand official standards.

Michael Carter: MSc, CMEngNZ(PEngGeol) Reg no: 253333

Date: 25 01 2021

Disclaimer

This investigation has been conducted as a preliminary assessment only. It should not be used by any party in support of any works or construction which necessitate a full investigation as required by RITS specification. Soils properties between test sites are inferred.

Contents

1: I	nvestigation objectives	5
2: 9	Site description	5
3: I	Proposed development	5
4: I	Field investigation methodology	5
4	4.1: Soils shear strength	. 5
4	1.2: Soils identification and classification	5
4	4.3: Soils bearing capacity	5
4	4.4: Groundwater	5
4	4.5: Slope stability	5
5: I	Results	. 6
į	5.1: Soils origin	6
į	5.2: Soils shear strength	6
į	5.3: Soils bearing capacity	6
į	5.4: Groundwater	6
į	5.5: Surface water	6
į	5.6: Slope stability and building setbacks	. 6
į	5.7: Stormwater management	. 6
į	5.8: Onsite wastewater management	6
6: I	Hazards	7
(5.1: Seismic	7
(5.2: Liquefaction	. 7
(5.3: Slope stability	. 7
	6.3.1: Onsite stability	7
	6.3.2: Weavers Crossing embankment stability	7
(5.4: Erosion	. 7
	6.4.1: Onsite erosion	. 7
	6.4.2: Weavers Crossing embankment erosion	7
(5.5: Flooding	8
	5.6: Wind	
7: E	Environmental impact	8
-	7.1: General environmental impact	8
	7.2: Earthworks impact	
8: I	Features of cultural significance	8
9: 9	Summary	8
10:	Recommendations	8
11:	Conclusion	9
Ар	pendix 1: Plates	10

Terra Firma Resource Ltd
PO Box 67
Ngaruawahia

Geotechnical Assessment Lot 1 DPS 61699 Huntly

Raglan Geotech
238 Waimaori Rd
Raglan

Plate 1:	10
Plate 2:	10
Plate 3:	11
Plate 4:	11
Plate 5:	
Appendix 2: Site plan	
Appendix 3: Soils data	14
Appendix 4: Slope stability and geomechanical parameters	16
Appendix 5: Seismic parameters	18
References and documents used in this assessment	19

Geotechnical Assessment Lot 1 DPS 61699 Huntly Raglan Geotech 238 Waimaori Rd Raglan

1: Investigation objectives

The objective of this investigation is to identify if any major constraints relating to building foundation bearing capacity, environmental impact, and hazards, would eliminate the prospect of the site being developed as a residential subdivision. It specifically addresses the sub-surface soil properties and ground water levels of the site within the upper 4 metres, with reference to light-framed building foundation bearing capacity requirements (NZS 3604: 2011).

2: Site description

The surface topography is dominated by the NE side of an elevated ridge orientated in a NW-SE direction. Slope angles vary from $0-11^\circ$. Vegetation is pasture (Appendix 1, Plate 1 and Appendix 2). No surface watercourses dissect the property. The Weavers Crossing road forms the eastern boundary. Excavated approximately 40 years ago the road cutting is of varying height and distance from the legal boundary (Appendix 1, Plate 2 and Appendix 2).

3: Proposed development

The proposed objective involves a subdivision concept plan for low-medium density residential development.

4: Field investigation methodology

- 4.1: Soils shear strength
 - In situ shear vane testing throughout the profile at depths < 4 m

Standard: NZGS: Guideline for Hand Held Shear Vane Test

4.2: Soils identification and classification

• Sampling and description throughout the profile at depths < 4 m

Standard: NZGS: Soils Description Field Guide Sheet

4.3: Soils bearing capacity

• Calculations from undrained shear strength

4.4: Groundwater

 Observations of surrounding waterbodies and the degree of soil samples moisture content within boreholes

4.5: Slope stability

• Soils testing to 4 m depth and computerised slope stability analysis

Raglan Geotech 238 Waimaori Rd Raglan

5: Results

5.1: Soils origin

5 soil units were identified (Appendix 2):

- Topsoil to 0.2m depth
- Unit 1: Dense, stiff, dark-brown colluvium of <1 m thickness (Appendix 1 Plate 3)
- Unit 2: Brown silty-clay weathered tephra of < 0.75 m thickness (Appendix 1, Plate 4)
- Unit 3: Yellow-brown sandy-clay weathered tephra of ≤ 0.1 m thickness (Appendix 1, Plate 4)
- Paleosol of ≤ 0.1 m thickness at each unit boundary at most locations

5.2: Soils shear strength

Shear strength test results indicate consistently high shear strength throughout the site with an average of > 250 kPa (Appendix 3).

5.3: Soils bearing capacity

Minimum ultimate bearing capacity, as defined by NZS:3604 (\geq 300 kPa), is exceeded by a substantial margin throughout the site (Appendix 3). Bearing capacity kPa is \sim 2 x that of shear strength kPa.

5.4: Groundwater

Test site D1 is at the lowest elevation on the site and was selected specifically to establish the presence of groundwater. Soils at 4 m at this location were moist-wet and displayed no evidence of seasonal saturation. Based on these results and surrounding waterbodies, the piezometric surface at this location is expected to be at > 7 m depth.

5.5: Surface water

The site is elevated and has no up-slope water catchments.

5.6: Slope stability and building setbacks

Slope stability analysis was applied to the location considered most vulnerable to slope failure. Computerised analysis shows that the required setback for light framed buildings to achieve a factor of safety of the mandatory 1.3 is ~ 3 m (Appendix 4).

The analysis result reflects the high shear soils strength and inherent stability of the subsurface. Based on these results the minimum legal setback of 3 m from a road boundary can be applied.

5.7: Stormwater management

A public stormwater pipeline runs adjacent to Weavers Crossing.

5.8: Onsite wastewater management

Given the physical properties of the surface soil (dense, silty clay) the hydraulic conductivity (permeability) is expected to be *very-low to low*. The planned building

Raglan Geotech 238 Waimaori Rd Raglan

density will probably preclude the utilisation of conventional septic tank and effluent field systems, through lack of space. Therefore, alternative systems should be considered.

6: Hazards

6.1: Seismic

GNS, 210 defines the location's risk as the second lowest in NZ (Appendix 5).

 Risk of a seismic event that would compromise structures built to NZ standards is low

6.2: Liquefaction

Dense, cohesive, clayey soils not subjected to groundwater influence are considered to have low susceptibility to liquefaction. Peak ground acceleration is defined as *low* (0.1 – 0.2) within the GNS, 2010 *National Seismic* Hazard *Model*. The zone is defined as *Low Hills* in Tonkin and Taylor, 2019 where it states that *liquefaction is unlikely*.

• Risk of liquefaction is low

6.3: Slope stability

6.3.1: Onsite stability

Given the elevated undrained shear strength and the depth of the piezometric surface throughout the site, mass slope failure effecting the site is highly unlikely.

Risk of onsite mass slope failure is low

6.3.2: Weavers Crossing embankment stability

While mass slope failure of the Weavers Crossing embankment is unlikely, small-scale (< 2 m retreat) events are possible over a 50-year time frame.

 Risk of small-scale slope failure events on the Weavers Crossing embankment is medium

6.4: Erosion

6.4.1: Onsite erosion

There is no evidence of recent erosion on the site

• Risk of onsite residual soil erosion is low

6.4.2: Weavers Crossing embankment erosion

Visual evidence at Weavers Crossing embankment indicates on-going surface erosion and some metre-scale down-slope creep (Appendix 1, Plate 5).

 Risk of ongoing surface erosion and down-slope creep at the Weavers Crossing embankment over a 50-year period is high

Raglan Geotech 238 Waimaori Rd Raglan

6.5: Flooding

• Risk of surface and/or regional flooding is low

6.6: Wind

• The wind zone is defined in NZS,3604 as high

7: Environmental impact

7.1: General environmental impact

Given the absence of vulnerable ecosystems proximal to the site, and its elevation, no detrimental environmental impact as a result of the proposed development is anticipated.

• Risk of general environmental impact is low

7.2: Earthworks impact

Given the average slope angle of $\sim 5^{\circ}$ and that there is little level land, road construction and site levelling can be expected to result in significant volumes of disturbed soil, particularly if dwellings are of concrete slab foundation design. Pile foundations would reduce this volume and the extent of embankment retaining structures considerably.

 Providing regulatory containment measures are implemented, risk of soil-related environmental impact is low

8: Features of cultural significance

No features of cultural significance were identified during this site investigation.

9: Summary

That:

- The site is comprised of high very high shear strength and bearing capacity soils
- The groundwater piezometric surface is expected to be at > 7 m depth at the site's lowest elevation
- The hazard risk is generally low with the exception of potential influence from the Weavers Crossing embankment which is designated public land
- No features of cultural significance were identified

10: Recommendations

That:

 Means by which the Weavers Crossing embankment can be stabilised against ongoing erosion and retreat be investigated

Geotechnical Assessment Lot 1 DPS 61699 Huntly Raglan Geotech 238 Waimaori Rd Raglan

11: Conclusion

Aside from the possible influence of ongoing retreat of the Weavers Crossing embankment over a 50-year time-period, there are no compelling geotechnical or environmental restraints in relation to the proposed development.

Appendix 1: Plates

Plate 1: The site looking north along the ridge apex

Plate 2: Weavers Crossing embankment of ~ 5 m height and ~ 30° slope-angle

Plate 3: Dense colluvium at site D1

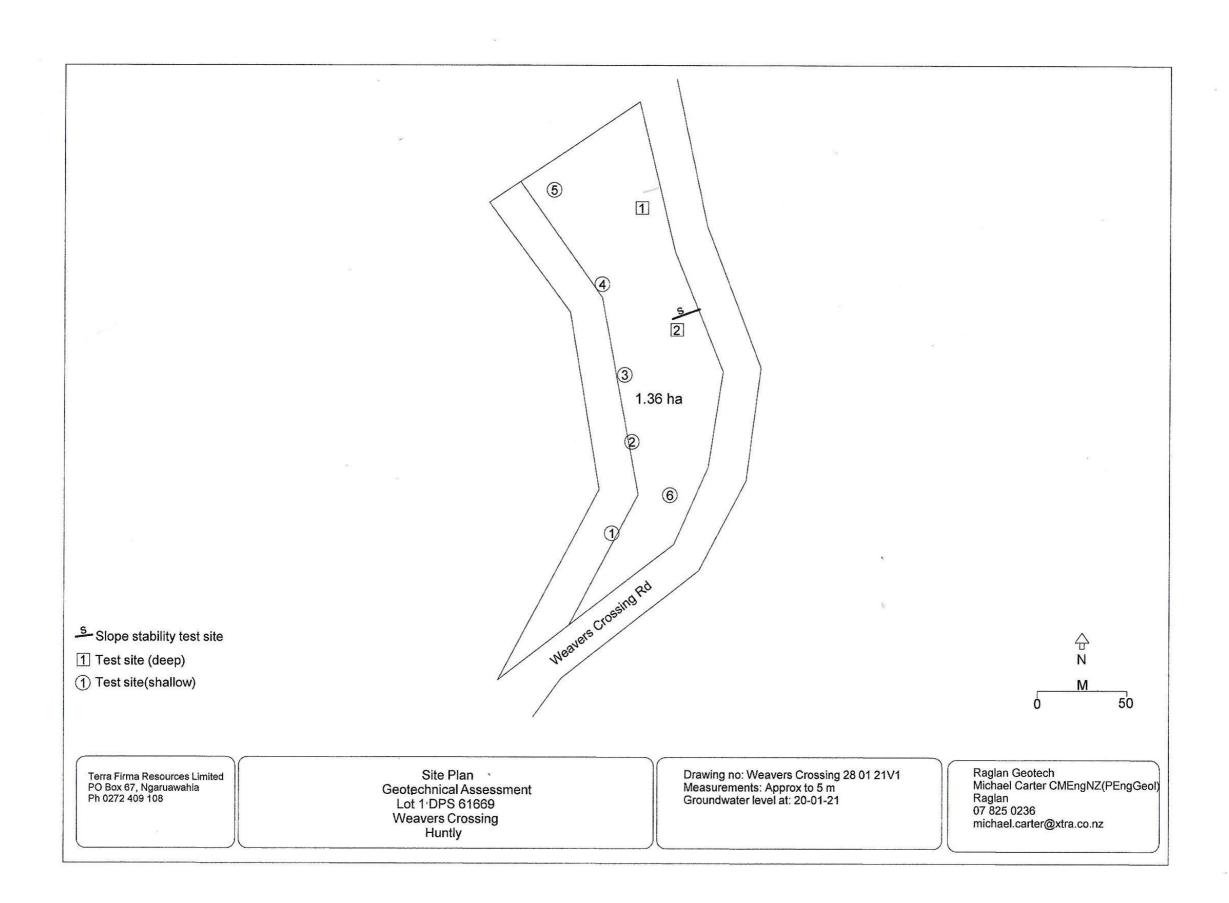


Plate 4: The boundary between grey-brown unit 2 and orange-brown unit 3

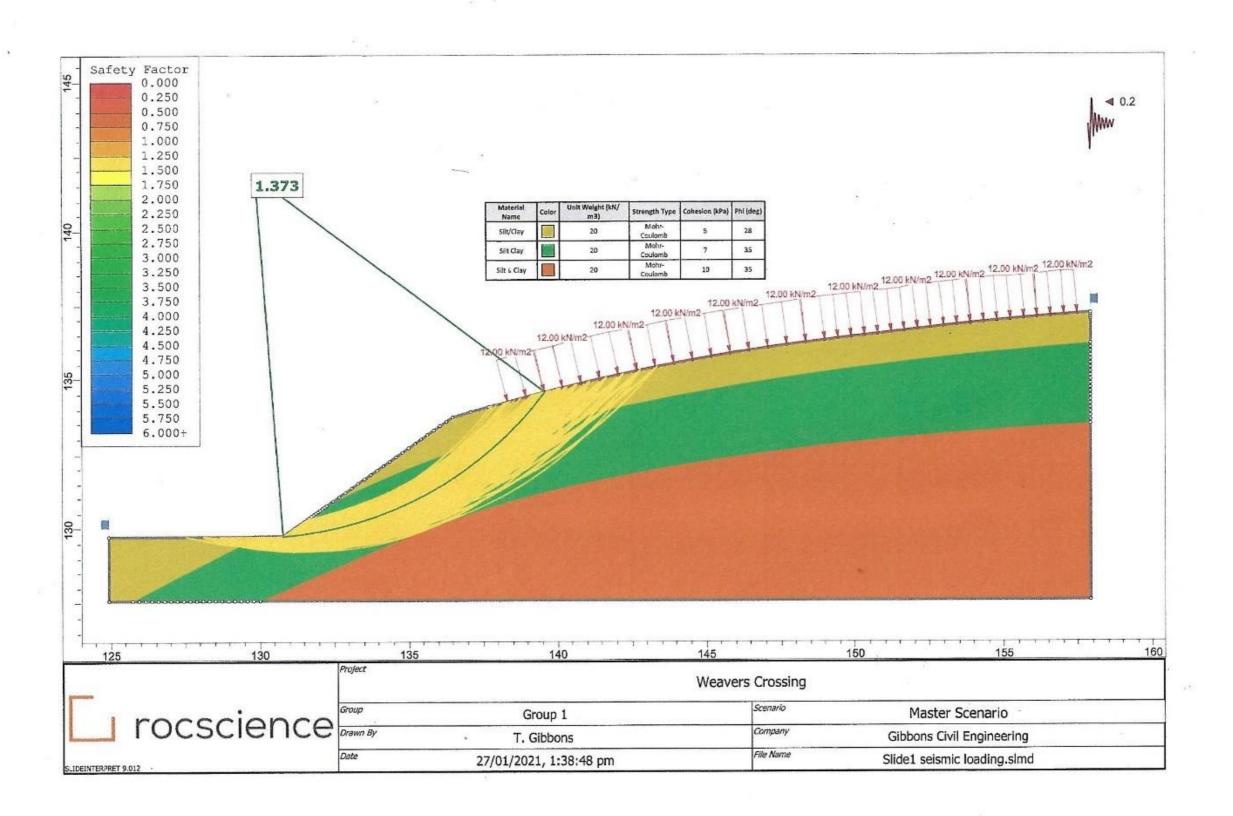
Plate 5: Leaning trees on the road embankment indicating some shallow down-slope displacement near the bottom of the slope

Appendix 2: Site plan

Appendix 3: Soils data

	Castash		Jaar												
_	Geotech														
	el Carter M	Sc CMEr	ngNZ (PE	ngGeo	ol)						Location				
Raglan											Part Lot 1 D				
											Weavers (Crossing			
Append	dix 2 : Soils	data	15 01 2	021							Huntly				
IIala	D1		F3C000	0.5	NC	101022			1/.	0.56					
Hole	D1	Calarra	E26989		_	101023	N4=:				Chass	(I-D-)		Outsta	Netes
Depth	Fraction C Zt S G	Colour				asticity M H	_	sture 1 W	Shear	Shear kPa	Shear			Origin	Notes
0	CZCSG		S F	ы п	L	IVI H	DIV	ı vv	NM	кРа		200 250 300			
250		D-Br			+				115	205		Goodground		Topsoil	
500	c duCl	D-R-Br			+				153				***	Colluvium	
	sdyCL				+									"	Causa da ulsan atmaa li
750	sdyCL	D-R-Br		+	+		\vdash		104					, ,	Some darker streak
	sdyCL	D-R-Br			+				85						Unit 1
	sdyCL	D-R-Br		\perp	-		\perp		97)		<u>"</u>	
	sdyCL	D-R-Br		_	-				94						
1750		Br		1	-		1		130					Tephra "	Silicic
2000		Br		-	-				138						Unit 2
2250		Br		_	-				130					"	Some sand
2500		Br							100					8	
2750		Br							85				***	"	
3000		Y-Br							128					Tephra	Silicic Unit 3
3250	-	Y-Br							108						L-Gr inclusions
3500	ztyCL	Y-Br				\			103					"	Wthrd pumice?
3750	ztyCL	Y-Br				_			90					"	Some sand
4000	ztyCL	Y-Br	- 1			١		1	88	157	11			"	
Hole	D2								K:	0.56					
Depth	Fraction	Colour	Consis	tency	PI	asticity	Moi	sture	Shear	Shear	Shear	(kPa)		Origin	Notes
•	C Zt S G		S F		_	мн		1 W	NM	kPa		200 250 300			
0												Goodground			
250		D-Br		-		1			115	205		_		Topsoil	
500	sdyCL	D-R-Br							153				***	Colluvium	Unit 1
750	sdyCL	D-R-Br							104					"	Some darker streak
	sdyCL	D-R-Br							85		/		₩	"	
	sdyCL	D-R-Br							97		_	\		"	
	sdyCL	D-R-Br							94				₩	"	
1750		Br							130					Tephra	Silicic
2000		Br							138					"	Unit 2
2250		Br							130					"	Some sand
2500		Br							100					"	222 34.14
2750	-	Br							85					"	
3000		Y-Br							128		_		0006	Tephra	Silicic Unit 3
3250	-	Y-Br				1			108)		п	L-Gr inclusions
3500		Y-Br				_		1	103			/			Wthrd pumice?
3750	-	Y-Br				-			90			/			Some sand
		Y-Br							88		-				Joine Sailu
4000	LIYCL	I-DI							68	15/	· ·			i	
Hole	1		E26988	74	N6/	100828			κ.	0.56					
Depth		Colour			_	asticity	Moi	sture	Shear	Shear	Shear	(kPa)		Origin	Notes
- cpui	C Zt S G	20.001				M H	_	1 W	NM	kPa		200 250 300		Ongin	140103

Hole	1		E26	598	874		N64	0082	28			K:	0.56					
Depth	Fraction	Colour	Со	nsi	sten	су	Pla	stici	ty	Moi	sture	Shear	Shear	Shea	r (kPa)		Origin	Notes
	C Zt S G		S	F	St	Н	L	М	Н	D N	1 W	NM	kPa	50 100 15	0 200 250 300			
0		D-Br													Goodground		Topsoil	TS to 150
250	sdyCL	Br			- 1			- 1				132	236				Tephra	
500	sdyCL	Br										151	270				"	Unit 2
750	sdyCL	Br										177	316				"	
1000	sdyCL	Br						- \				180	321				"	Some grey streaks
1250	ztyCl	Br			I							133	238			į	"	
1500	ztyCl	Br			/			1				180	321				"	


Hole	2		E26	988	95		N64	0088	31				K:	0.56				
Depth	Fraction	Colour	Cor	nsist	anc	y	Pla	stic	ity	Mo	ist	ure	Shear	Shear	Shea	r (kPa)	Origin	Notes
	C Zt S G		S	F 5	t I	1	L	M	Н	l d	VI	W	NM	kPa	50 100 15	0 200 250 300		
0		D-Br														Goodground	 Topsoil	TS to 200
250	sdyCL	Br											133	238				Unit 2
500	sdyCL	Br											180	321			Tephra	
750	sdyCL	Br-Gr											157	280			"	Palesol
1000	ztyCL	Gr											147	263			"	Unit 3
1250	ztyCl	R-Br			/				\	'	١		142	254		1	"	

Geotechnical Assessment Lot 1 DPS 61699 Huntly Raglan Geotech 238 Waimaori Rd Raglan

Hole	3		E2	698	890)	N64	1009	28				K:	0.56					
Depth	Fraction	Colour	Co	nsi	ster	псу	Pla	astic	ity	Mo	istı	ure	Shear	Shear	Shea	r (kPa)		Origin	Notes
	C Zt S G		S	F	St	Н	L	М	Н	D N	Λ	W	NM	kPa	50 100 15	0 200 250 300)		
0		D-Br														Goodground		Topsoil	TS to 175
250	ztyCL	Br						- 1					107	191				Tephra	Unit 2
500	sdyCL	Br											160	286				"	
750	sdyCL	Br											164	293				"	
1000	ztyCL	Or-Br											160	286				"	Unit 3
1250	ztyCl	Or-Br											120	214				"	
1500	ztyCl	Or-Br			/				1	/			77	138	-			"	

1500	ztyCl	Or-Br	/		١ ١	//	138		1	****		
Hole	4		E2698845	N6400974		K:	0.56					
Depth	Fraction	Colour	Consistency	Plasticity	Moisture	Shear	Shear	Shea	r (kPa)		Origin	Notes
	C Zt S G		S F St H	L M H	D M W	NM	kPa	50 100 15	0 200 250 300			
0		D-Br							Goodground		Topsoil	TS to 175
250	sdyCL	Br	,			180	321				Tephra	Unit 2
500	sdyCL	Br				178	318				"	
750	sdyCL	Br				182	325)		"	
1000	sdyCL	Br				160	286		/		"	
1250	ztyCl	Or-Br				158	282				"	Unit 3
1500	ztyCl	Or-Br		\		146	261		/		"	
Hole	5		E2698854	N6401025		K:	0.56					
Depth	Fraction	Colour	Consistency	Plasticity	Moisture	Shear	Shear	Shea	r (kPa)		Origin	Notes
	C Zt S G		S F St H	L M H	D M W	NM	kPa	50 100 15	0 200 250 300			
0		D-Br							Goodground		Topsoil	TS to 250
250	ztyCL	Br	1	,	1	120	214				Tephra	Unit 2
500	ztyCL	Br				190	339				"	
750	sdyCL	Gr-Br				185	330		7		"	
1000	sdyCL	Or-Br				185	330				"	Paleosol
1250	sdyCL	Or-Br				178	318				"	Unit 3
1500	sdyCl	Or-Br	1	1	\	173	309				"	
Hole	6		E2698296	N6400898		K:	0.56					
Depth	Fraction	Colour	Consistency	Plasticity	Moisture	Shear	Shear	Shea	r (kPa)		Origin	Notes
	C Zt S G		S F St H	L M H	D M W	NM	kPa	50 100 15	0 200 250 300			
0		D-Br							Goodground		Topsoil	TS to 250
250	ztyCL	Br	\	1	1	163	291		\		Tephra	Unit 2
500	ztyCL	Br				172	307		\		"	
750	sdyCL	D-Br				185	330				"	Brown streaking
1000	sdyCL	Or-Br				163	291				"	Paleosol
1250	sdyCL	Or-Br				159	284				"	Unit 3
1500	sdyCl	Or-Br		1	\	142	254		/		"	Some grey

Appendix 4: Slope stability and geomechanical parameters

Geotechnical Assessment Lot 1 DPS 61699 Huntly

Raglan Geotech 238 Waimaori Rd Raglan

Appendix 4 (cont)

15 07 2019

Raglan Geotech Lot 1 DPS 61669

Weavers

Michael Carter MSC CMEngNZ (PEngGeol) Crossing

Raglan

Undrained shear strength Su 170 kPa

35° Internal friction angle Φ

 $20 \, \text{KN/m}^3$ Soils unit weight γ 100 kPa

Maximum bearing pressure, underside of piles or footings

Clay cohesion should be ignored

Skin friction over first 300 mm should be ignored

Geotechnical Assessment Lot 1 DPS 61699 Huntly Raglan Geotech 238 Waimaori Rd Raglan

Appendix 5: Seismic parameters

Raglan Geotech

Lot 1 DPS 61669 Huntly

25 01 2021

Elastic site spectra =	0.0338	
$C(T) = C_h(T) Z R N(T,D)$		
Structural shape factor	C _h (T)	0.9
Hazard factor	Z	0.15
Return period factor	R	0.25
Near fault factor	N(T,D)	NA

Ultimate limit state =	$C_d(T_1) = 0$	$C(T_1) S_p / K_u =$	0.0338
Elastic site spectrum C(T ₁)	C(T ₁)	0.0338	
Structural performance factor	S_p	1	
Structural ductility factor	K_{u}	1	
Serviceability limit state =	$C_d(T_1) = 0$	$C(T_1) S_p / K_u =$	0.0236
Serviceability limit state = Elastic site spectrum C(T ₁)	$C_{d}(T_{1}) = C$ $C(T_{1})$	$C(T_1) S_p / K_u =$ 0.0338	0.0236
•			0.0236
Elastic site spectrum C(T ₁)	C(T ₁)	0.0338	0.0236
Elastic site spectrum C(T ₁) Structural performance factor	C(T ₁)	0.0338	0.0236

References and documents used in this assessment

Environment Waikato, 2020: Waikato Stormwater Management Guideline

GNS, 2010: National Seismic Hazard Model

MBIE, 2018: Earthquake Geotechnical Engineering Practice Series

NZGS publication: Guideline for Hand-held Shear Vane Test

NZGS publication: Field Description of Soil and Rock

NZS1170.5, 2004: Earthquake Design Actions

NZS 4402,1986: Methods of Testing Soils for Civil Engineering Purposes

NZS 3604,2011: Timber Framed Buildings

Tonkin and Taylor, 2019: Liquefaction Desktop Study

WLASS: The Regional Infrastructure Technical Specification (RITS)

Attachment 2:

Preliminary Geotechnical Investigation 137 Rotowaro Road

Preliminary Geotechnical Investigation Pt Lot 2, Lot 1, DPS 61669, Pt Sec 1 SO 58281 & Allot 9C SO 34206 137 Rotowaro Rd, Huntly 11 11 2020

Raglan Geotech

Michael Carter CMEngNZ (PEngGeol)

Raglan

Geotechnical Investigation 137 Rotowaro Rd Huntly Raglan Geotech 238 Waimaori Rd Raglan

This investigation has been conducted according to relevant New Zealand official standards

Michael Carter: MSc, CMEngNZ(PEngGeol) Reg no: 253333

Date: 11 11 2020

Disclaimer

This investigation has been conducted as a preliminary assessment to establish soils bearing capacity in accordance with NZS:3604 requirements, and the presence of groundwater only. It should not be used by any party in support of any works or construction which necessitate a full investigation of a standard required by regulatory authorities. Soils properties between test sites are inferred.

Raglan Geotech 238 Waimaori Rd Raglan

Contents

1: Investigation objectives4
2: Site description4
3: Proposed development4
4: Field investigation methodology4
4.1: Soils shear strength4
4.2: Soils identification and classification4
4.3: Soils bearing capacity4
4.4: Groundwater4
5: Results5
5:1 Zones5
5.2: Soils origin and engineering properties5
5.3: Soils shear strength5
5.4: Soils bearing capacity5
5.5: Groundwater5
5.6: Surface water5
5.7: Consolidation and settlement5
6: Discussion6
7: Conclusion
Appendix 1: Plates8
Plate 1:8
Plate 2:
Plate 3:9
Plate 49
Plate 5:
Appendix 2: Site plan11
Appendix 3: Soils properties data12
Appendix 4: Penetrometer data14
References and documents used in this report17

Raglan Geotech 238 Waimaori Rd Raglan

1: Investigation objectives

The objective of this investigation is to identify if a major constraint relating to building foundation bearing capacity would eliminate the prospect of the site being developed as a residential subdivision. It addresses the sub-surface soil properties and ground water levels of the site within the upper 2 metres, with specific reference to the light-framed building foundation bearing capacity standard (NZS 3604: 2011).

2: Site description

Surface topography is gently undulating with a general dip (slope) angle of $\sim 4^{\circ}$ NNE. Vegetation is comprised primarily of high-production grassland, with some reeds near the northern boundary, and a band of trees along the SW boundary.

The sub-surface is comprised almost entirely of open-cast coal mine excavation debris, which was progressively back-filled in depths ranging from metres to tens of metres as the mining progressed in a NE direction.

Material properties range from hard rock clasts to very soft saturated clays (MacGregor, 2019). Several low-discharge surface watercourses exist throughout the site (Appendix 1, Plate 1). These channels are likely to be seasonal and constitute < 5% of the total land area.

3: Proposed development

The proposed objective involves a subdivision application for low-medium density residential development (Wainui Environmental, 2020).

4: Field investigation methodology

4.1: Soils shear strength

In situ shear vane testing throughout the profile at depths 0.1 − 2.8 m

Standard: NZGS: Guideline for Hand Held Shear Vane Test

4.2: Soils identification and classification

Sampling and description throughout the profile at depths 0.1 – 2.8 m

Standard: NZGS: Soils Description Field Guide Sheet

4.3: Soils bearing capacity

- Dynamic penetrometer testing to depths of up to 1.4 m
- Vane penetrometer resistance testing at depths 0.1 2.8 m
- Calculation from shear vane results

Standard: NZS 4402:1986

4.4: Groundwater

• Observations of surrounding springs and degree of soil samples moisture content and water within boreholes

Geotechnical Investigation 137 Rotowaro Rd Huntly Raglan Geotech 238 Waimaori Rd Raglan

5: Results

5:1 Zones

Given the results of this investigation, the site has been divided into two zones based on engineering properties. These are defined by colour in Appendix 2. Generally, the NE Zone bearing capacity test results exceed that required to qualify as *good ground* (\geq 300 kPa) by NZS:3604. The SW Zone results are considerably less than these requirements (Appendixes 2, 3, 4).

5.2: Soils origin and engineering properties

Soils properties are highly variable. They range from hard rock to very soft saturated clays in a chaotic mix that is typical of open cast coal mine debris. Accordingly, engineering properties are also highly variable (Appendixes 3, 4).

5.3: Soils shear strength

Shear strength varies from 15 - 250 KPa (*very soft - hard*) with high shear strength dominating the NE Zone. The SW Zone is dominated by soft clays of high moisture content and low shear strength (Appendix 3).

5.4: Soils bearing capacity

Bearing capacity kPa is $^{\sim}$ 2 x that of shear strength kPa. *Good ground,* as defined by NZS:3604 (\geq 300 kPa), is exceeded within most of the NE Zone tested soil profiles. The SW Zone soils bearing capacity is mostly very low – low (Appendix 3). Building foundations embedded in soils that don't comply as *goodground* require specific engineering design. This is a common scenario in New Zealand construction developments.

5.5: Groundwater

Groundwater was located in boreholes 5, 10, 11, at depths ranging from 1.5 m to 2.8 m. Saturated, very soft soils near the bottom of other boreholes indicates that groundwater is likely to present within a 3 m depth in other locations throughout the site (Appendix 1, Plates 2, 3).

5.6: Surface water

The site has a number of seasonal surface water drainage zones covering < 5% of the total area. These mostly exist at lower elevations in the northern sector (Appendix 1, Plate 1). It is difficult to establish if groundwater is contributing to the discharge. Penetrometer testing within this zone indicates that the subsurface soil properties do not differ from the remainder of the site.

5.7: Consolidation and settlement

Given that the tested area subsurface is comprised of opencast mine debris of mixed properties including fully saturated silt and clay, consolidation and land surface settlement will have occurred since debris deposition.

Geotechnical Investigation 137 Rotowaro Rd Huntly Raglan Geotech 238 Waimaori Rd Raglan

This investigation makes no attempt to quantify the historical or current rate of settlement, which is reliant on surface displacement monitoring.

6: Discussion

Mine debris on the site appears to have been deposited in different locations according to their properties. This could have been an incidental result of pit excavation progression, or through design.

The NE Zone, constituting ~ 70% of the property, has a significant presence of the Hinuera Formation/Tauranga Group type soils (Appendix 1, Plate 4). These are volcanoclastic alluvial silts, sands, and gravels. Originating from the Taupo Volcanic Zone, they are identifiable through the presence of pumice clasts (Hall et al., 2006; Kear and Schofield, 1978). They are usually the upper-most sedimentary unit within the Huntly region stratigraphy. They have robust engineering properties in relation to foundation bearing capacity. The Hinuera gravely sands are known as 'pit sand' in the Waikato Basin and are commonly used as hard-fill below concrete slab foundations.

It is these Hinuera/Tauranga Group type soils that contribute to the elevated engineering properties in the NE Zone. Also present are greywacke gravel and cobbled-sized rocks (Appendix 1, Plate 5). These probably originate from stratigraphic units lower in the profile such as the Whangamarino Formation (Kear and Schofield, 1978). The mixing of different stratigraphic units was probably a random result of overburden stripping.

The SW Zone is a mix of very soft—soft moist sand, fireclay, coal dust, and rock fragments. Based on the 4 representative boreholes' data it is here not considered suitable for building construction. However, a comprehensive subdivision assessment involving denser testing may identify building sites, or sites suitable for other amenities such as parks and/or recreational areas.

Given the random distribution of low-permeability clays in the subsurface, groundwater migration under the influence of consolidation may result in a piezometric surface that is not uniform throughout the site. Therefore, monitoring of ground water at locations of an appropriate density is here considered a second potential means of gauging differential settlement. Discussion with the client indicates that a land settlement monitoring system is being installed.

Geotechnical Investigation 137 Rotowaro Rd Huntly Raglan Geotech 238 Waimaori Rd Raglan

7: Conclusion

That:

- On the basis of light-framed building foundation bearing capacity as defined in NZS3604 the results of this preliminary investigation justify further investigation of the scope required in a full subdivision geotechnical assessment.
- Based on results from 4 boreholes, the SW zone is here considered not suitable
 for building construction. However, a comprehensive subdivision assessment
 involving denser testing may identify building sites or sites suitable for other
 amenities such as parks and/or recreational areas.
- Land surface displacement and ground water monitoring is recommended during the next phase of geotechnical investigation.

Appendix 1: Plates

Plate 1: Testing at Site 12, near a seasonal surface drainage zone

Plate 2: Fully saturated sand near the water table: test site 5

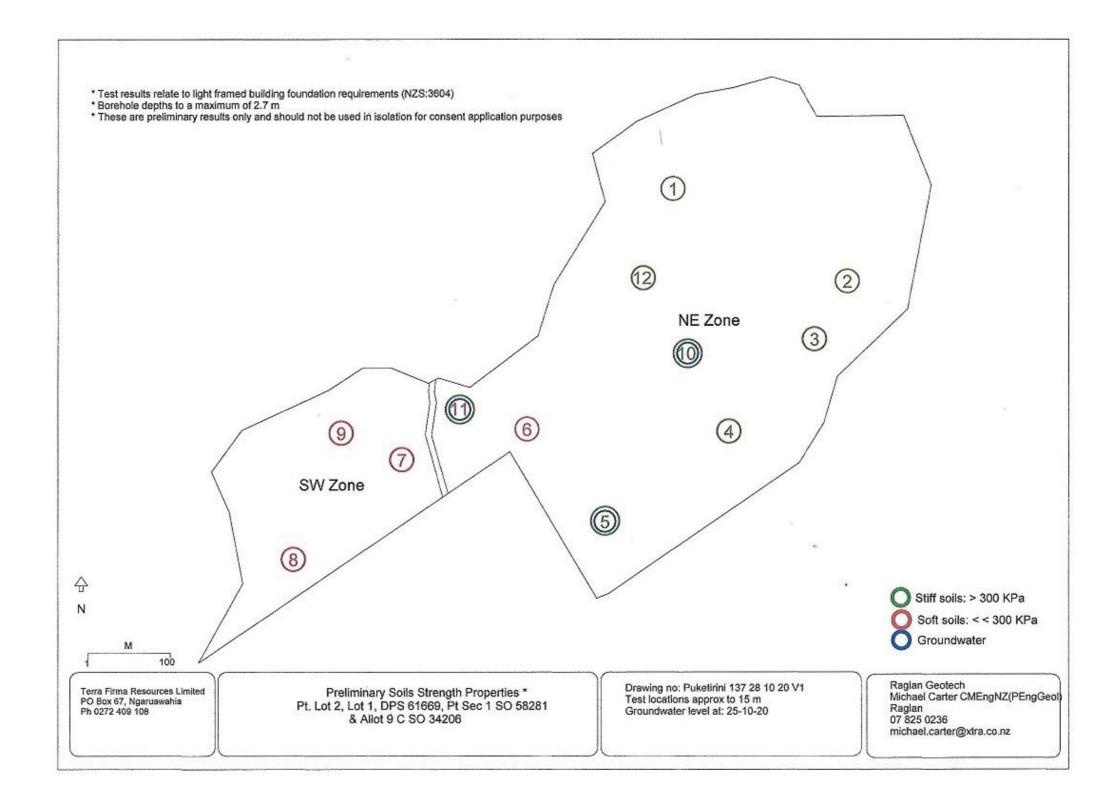

Plate 3: Very soft saturated clay at 1.6 m: Test site 10

Plate 4: Mixed Hinuera formation and coal fragments near test site 1

Plate 5: Mixed cobbles, gravel and sand near Site 2

Appendix 3: Soils properties data

Dl	C+								
	Geotech					1 1			
Michae	el Carter M	Sc CMEn	gNZ (PEngGeol)		Location			
Raglan						137 Rotowaro Rd			
						Huntly			
Append	dix 2 : Soils	data	28 10 2020						
		Groun	dwater level o	n date of inv	estigation				
Hole	Puketirini	1							
Depth	Fraction	Colour	Consistency	Plasticity	Moisture	Shear (kPa)		Origin	Notes
	C Zt S G		S F St H	L M H	D M W	50 75 100 150 200 250			
0	sdyG	Brn-Gr	1	1	1	Goodground		Горsоil	Topsoil t0 150
300	sdyG	Brn-Gr					::::::::::::::::::::::::::::::::::::::	Hinuera	Some gravel
600	sdyG	Brn-Gr					::::::::::::H	Hinuera	Some gravel
900	ztyG	Brn	/	\	\		::::::::::::::::::::::::::::::::::::::	Hinuera	Refusal at 800 (rocl
Hole	Puketirini	2							
Depth	Fraction	Colour	Consistency	Plasticity	Moisture	Shear (kPa)		Origin	Notes
	C Zt S G		S F St H	L M H	D M W	50 75 100 150 200 250			
0	clyZt	D-brn	1	1		Goodground	 1	Горsоil	
300	clyZt	D-brn				\	333333 H	Hinuera mix	
600	clyZt	D-brn					::::::::::::::::::::::::::::::::::::::	Hinuera mix	Some pumice
900	clyZt	L-brn					::::::::::::::::::::::::::::::::::::::	Hinuera mix	Some coal
1200	clyZt	L-brn	1		/		::::::::::::::::::::::::::::::::::::::	Hinuera mix	
Hole	Puketirini	3							
Depth	Fraction	Colour	Consistency	Plasticity	Moisture	Shear (kPa)		Origin	Notes
	C Zt S G		S F St H	L M H	D M W	50 75 100 150 200 250			
0	ztyCL	Gr-brn	1	1	1	Goodground	₩₩₩ 1	ГорѕоіІ	
300	ztyCL	Gr-brn					:::::::ι	Jnknown	Refusal (rock)
Hole	Puketirini Fraction		Camaister					Origin	
Берип	Haction			Diacticity	Moietura	Shoar (kDa)			
	C 7+ S G	Colour	Consistency	Plasticity	Moisture	Shear (kPa)		Origin	Notes
0	C Zt S G		S F St H	L M H		50 75 100 150 200 250			Notes
0	ztyCL	D-brn				` '	******	Topsoil	Notes
300	ztyCL SdyZ	D-brn Brn				50 75 100 150 200 250	:::::::::I	Topsoil Hinuera	Notes
300 600	ztyCL SdyZ clyZ	D-brn Brn Brn				50 75 100 150 200 250) 	Fopsoil Hinuera Hinuera	
300 600 900	ztyCL SdyZ clyZ clyZ	D-brn Brn Brn Brn				50 75 100 150 200 250) 	Topsoil Hinuera Hinuera Hinuera	Notes Some pumice
300 600 900 1200	ztyCL SdyZ clyZ clyZ clyZ	D-brn Brn Brn Brn Brn				50 75 100 150 200 250		Topsoil Hinuera Hinuera Hinuera Hinuera	
300 600 900 1200 1500	ztyCL SdyZ clyZ clyZ clyZ clyZ	D-brn Brn Brn Brn Brn D-brn				50 75 100 150 200 250		Topsoil Hinuera Hinuera Hinuera Hinuera Fire clay	
300 600 900 1200	ztyCL SdyZ clyZ clyZ clyZ clyZ	D-brn Brn Brn Brn Brn				50 75 100 150 200 250		Topsoil Hinuera Hinuera Hinuera Hinuera	
300 600 900 1200 1500 1800	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ	D-brn Brn Brn Brn Brn D-brn D-brn				50 75 100 150 200 250		Topsoil Hinuera Hinuera Hinuera Hinuera Fire clay	
300 600 900 1200 1500 1800	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ clyZ Puketirini	D-brn Brn Brn Brn Brn D-brn D-brn	S F St H	L M H	D M W	50 75 100 150 200 250 Goodground		Topsoil Hinuera Hinuera Hinuera Hinuera Fire clay	Some pumice
300 600 900 1200 1500 1800	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ Puketirini Fraction	D-brn Brn Brn Brn Brn D-brn D-brn	S F St H	L M H	D M W	50 75 100 150 200 250 Goodground Shear (kPa)		Topsoil Hinuera Hinuera Hinuera Hinuera Fire clay	
300 600 900 1200 1500 1800 Hole	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ clyZ cl	D-brn Brn Brn Brn D-brn D-brn Colour	S F St H	L M H	D M W	Shear (kPa) 50 75 100 150 200 250 Goodground Shear 200 250		Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Fire clay Origin	Some pumice
300 600 900 1200 1500 1800 Hole Depth	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ clyZ cl	D-brn Brn Brn Brn D-brn D-brn Colour	S F St H	L M H	D M W	50 75 100 150 200 250 Goodground Shear (kPa)		Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Fire clay Origin	Some pumice Notes
300 600 900 1200 1500 1800 Hole Depth	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ clyZ cl	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn G-brn	S F St H	L M H	D M W	Shear (kPa) 50 75 100 150 200 250 Goodground Shear 200 250		Topsoil Hinuera Hinuera Hinuera Hinuera Fire clay Fire clay Origin Topsoil Hinuera	Some pumice Notes
300 600 900 1200 1500 1800 Hole Depth 0 300 600	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ clyZ SdyZ clyZ clyZ clyZ ClyZ Puketirini Fraction C Zt S G S S	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn G-brn	S F St H	L M H	D M W	Shear (kPa) 50 75 100 150 200 250 Goodground Shear 200 250		Topsoil Hinuera Hinuera Hinuera Hinuera Fire clay Fire clay Origin Topsoil Hinuera Hinuera	Some pumice Notes
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ SdyZ clyZ clyZ clyZ clyZ Puketirini Fraction C Zt S G S S S S ztyS	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn G-brn G-brn	S F St H	L M H	D M W	Shear (kPa) 50 75 100 150 200 250 Goodground Shear 200 250	1	Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Hinuera Home pumice	Some pumice Notes
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900 1200	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ SdyZ clyZ clyZ clyZ clyZ Puketirini Fraction C Zt S G S S S S ztyS S	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn G-brn G-brn G-brn	S F St H	L M H	D M W	Shear (kPa) 50 75 100 150 200 250 Goodground Shear 200 250	1	Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Hinuera Hinuera	Some pumice Notes
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ SdyZ clyZ clyZ clyZ clyZ Puketirini Fraction C Zt S G S S S S ztyS S	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn G-brn G-brn	S F St H	L M H	D M W	Shear (kPa) 50 75 100 150 200 250 Goodground Shear 200 250	1	Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Hinuera Home pumice	Some pumice Notes
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900 1200 1500	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ SdyZ clyZ clyZ clyZ clyZ Puketirini Fraction C Zt S G S S S S S S S S S	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn G-brn G-brn G-brn G-brn	S F St H	L M H	D M W	Shear (kPa) 50 75 100 150 200 250 Goodground Shear 200 250	1	Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Hinuera Hinuera	Some pumice Notes
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900 1200 1500	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ SelyZ clyZ clyZ clyZ clyZ Puketirini Fraction C Zt S G S S S S S ZtyS S S Puketirini	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn G-brn G-brn G-brn G-brn G-brn	Consistency S F St H	Plasticity L M H	Moisture D M W	Shear (kPa) 50 75 100 150 200 250 Goodground Shear (kPa) 50 75 100 150 200 250 Goodground	1	Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Hinuera Gome pumice Hinuera Groundwater	Notes Sand Some pumice
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900 1200 1500	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ SelyZ clyZ clyZ clyZ clyZ Puketirini Fraction C Zt S G S S S S ztyS S Puketirini Fraction	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn G-brn G-brn G-brn G-brn G-brn	Consistency S F St H	Plasticity L M H	Moisture D M W	Shear (kPa) Shear (kPa) Shear (kPa) Shear (kPa)	1	Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Hinuera Hinuera	Some pumice Notes
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900 1200 1500 Hole Depth	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ SelyZ clyZ clyZ clyZ clyZ Puketirini Fraction C Zt S G S S S S S Puketirini Fraction C Zt S G	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn G-brn G-brn G-brn G-brn G-brn G-brn G-brn G-brn	Consistency S F St H	Plasticity L M H	Moisture D M W	Shear (kPa) Shear (kPa) Shear (kPa) 50 75 100 150 200 250 Goodground Shear (kPa) 50 75 100 150 200 250		Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Gome pumice Hinuera Groundwater Origin	Notes Sand Some pumice
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900 1200 1500 Hole Depth	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ SelyZ clyZ clyZ clyZ clyZ clyZ clyZ clyZ c	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn G-brn G-brn G-brn G-brn G-brn G-brn G-brn	Consistency S F St H	Plasticity L M H	Moisture D M W	Shear (kPa) Shear (kPa) Shear (kPa) Shear (kPa)		Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Groundwater Origin	Notes Sand Some pumice Notes
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900 1200 1500 Hole Depth	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ SelyZ clyZ clyZ clyZ clyZ Puketirini Fraction C Zt S G S S S S ZtyS S S Puketirini Fraction C Zt S G ZtyCL ztyCL	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn	Consistency S F St H	Plasticity L M H	Moisture D M W	Shear (kPa) Shear (kPa) Shear (kPa) 50 75 100 150 200 250 Goodground Shear (kPa) 50 75 100 150 200 250	1 1 1 1 1 1 1 1 1 1 1 1 1	Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Groundwater Origin Topsoil Origin	Notes Sand Some pumice Notes Notes Notes
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900 1200 1500 Hole Depth 0 300 600	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ SelyZ clyZ clyZ clyZ clyZ Puketirini Fraction C Zt S G S S S S ZtyS S S Puketirini Fraction C Zt S G ztyCL ztyCL	D-brn Brn Brn D-brn D-brn 5 Colour G-brn	Consistency S F St H	Plasticity L M H	Moisture D M W	Shear (kPa) Shear (kPa) Shear (kPa) 50 75 100 150 200 250 Goodground Shear (kPa) 50 75 100 150 200 250		Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Groundwater Origin Topsoil Mine debris Mine debris	Notes Sand Some pumice Notes Notes Mixed fill Coal fragments
300 600 900 1200 1500 1800 Hole Depth 0 300 600 900 1200 1500 Hole Depth	ztyCL SdyZ clyZ clyZ clyZ clyZ clyZ clyZ clyZ Puketirini Fraction C Zt S G S S ztyS S Puketirini Fraction C Zt S G ztyC ztyCL ztyCL clyZ	D-brn Brn Brn Brn D-brn D-brn 5 Colour G-brn	Consistency S F St H	Plasticity L M H	Moisture D M W	Shear (kPa) Shear (kPa) Shear (kPa) 50 75 100 150 200 250 Goodground Shear (kPa) 50 75 100 150 200 250		Topsoil Hinuera Hinuera Hinuera Hinuera Hinuera Hinuera Fire clay Origin Topsoil Hinuera Hinuera Hinuera Groundwater Origin Topsoil Origin	Notes Sand Some pumice Notes Notes Notes

Raglan Geotech 238 Waimaori Rd Raglan

3					,					
Hole	Puketirini	7								
Depth			Consistency	Plasticity	Moisture	Shear (I	kPa)		Origin	Notes
	C Zt S G		S F St H	L M H	D M W	50 75 100 150				
0	clyZ	L-gr	1				Goodground	*****	Tonsoil	
300	clyZ	L-gr				_	occugrounu		Hinuera	Pumice sand/silt
600	clyZ	L-gr			1				Hinuera	Pumice sand/silt
	1	Brn	_/						Mine debris	
900	ztyCL		_/	<u> </u>						Fire clay
	ztyCL	Brn	_/			<i></i>			Mine debris	Fire clay
	ztyCL	Brn		—					Mine debris	Fire clay
1800	ztyCL	Brn	1	١		/			Mine debris	Very soft clay
Hole	Puketirini									
Depth	Fraction	Colour	Consistency	Plasticity	Moisture	Shear (I			Origin	Notes
	C Zt S G		S F St H	L M H	D M W	50 75 100 150				
0	clyZ	D-brn			_\		Goodground		Topsoil	
300	clyZ	Brn)			Mine debris	Some orange
600	clyZ	Brn		\					Mine debris	V soft, some grav
900	ztyCL	Brn		\					Mine debris	Refusal (rock)
						,				
Hole	Puketirini	9								
	Fraction		Consistency	Plasticity	Moisture	Shear (I	kPa)		Origin	Notes
- 12 - 5	C Zt S G		S F St H		D M W	50 75 100 150				
0	ztyCL	Or	1	*! !!	1		Goodground		Tonsoil	
300	clyZ	Gry					Sociagiouila	************	Hinuera	Pumice sand/silt
	1	Brn							Hinuera	Pumice sand/silt
600	clyZ									
900	clyZ	Gry							Mine debris	Some coal dust
1200	clyZ	Gry							Mine debris	Brn clay
	clyZ	Gry						<i>IIIII</i>	Mine debris	Some pumice san
1800	sdyCL	D-gry	1		1	1			Mine debris	Very soft clay
Hole	Puketirini	10								
Depth	Fraction	Colour	Consistency	Plasticity	Moisture	Shear (I	kPa)		Origin	Notes
	C Zt S G		S F St H	L M H	D M W	50 75 100 150	200 250			
0	clyZ	L-brn	/		١		Goodground		Topsoil	
300	clyZ	L-brn			1				Hinuera mix	Pumice sand/silt
600	clyZ	L-brn							Hinuera mix	Pumice sand/silt
900	clyZ	L-brn			1				Mine debris	
1200	1	Gry-brn				\			Mine debris	Some sand
	clyZ								Mine debris	Joine Sand
	1	Gry-brn						mm	·	
	clyZ	Gry-brn							Mine debris	
	clyS	Gry-brn							Mine debris	
2300	clyS	Gry-brn							Mine debris	
2500	-	Gry-brn							Mine debris	Some pumice
2800	clyS	Gry-brn							Mine debris	Groundwater
Hole	Puketirini	11								
Depth	Fraction	Colour	Consistency	Plasticity	Moisture	Shear (I	kPa)		Origin	Notes
	C Zt S G		S F St H	L M H	D M W	50 75 100 150	200 250			
0	ztyCL	Brn	1	1	1	ı	Goodground		Topsoil	
300	ztyCL	Brn					-		Mine debris	Pumice sand/silt
600	ztyCL	Brn							Mine debris	Pumice sand/silt
900	clyZ	Brn					1		Mine debris	Clayey coal dust
	ztyCL	B-br			-		-		Mine debris	Clayey coal dust
			/				/			''''
	ztyCL	Brn						mm	Mine debris	Clayey coal dust
1800	clyZ	L-gr	<i>y</i>					111111111	Mine debris	Groundwater
		4.3								
Hole	Puketirini									
	Puketirini Fraction		Consistency	Plasticity	Moisture	Shear (I	kPa)		Origin	Notes
			Consistency S F St H	Plasticity L M H	Moisture D M W	Shear (I 50 75 100 150	•		Origin	Notes
	Fraction					50 75 100 150	•			Notes
Depth	Fraction C Zt S G	Colour				50 75 100 150	200 250			Notes Pumice sand/silt

Raglan Geotech 238 Waimaori Rd Raglan

Appendix 4: Penetrometer data

	•	ter resistance	e: 12 exploratory	y sites		
Raglan Geote	ch					
Michael Carte	r MSC CMEngN	Z (PEngGeol)		Location		
Raglan				137 Rotowaro Rd		
28 10 2020				Huntly		
	Topsoil			Topsoil		
	Good Ground (300 KPa +)		Good Ground	(300 KPa +)	
Test location	1		Test location	2		
	Dpth/5 blows	D/5 blows		Dpth/5 blows	D/5 blows	
	180			120		
	230	50		200	80	
	280	50		300	100	
	320	40		400	100	
	440	120		580	180	
	500	60		720	140	
	520	20		900	180	
	Refusal			1020	120	
				1160	140	
				1260	100	
				1310	50	
				1310	30	
	Topsoil			Topsoil		
	Topsoil	300 KPa +)		Topsoil Good Ground	(300 KPa +)	
Test location	Good Ground (300 KPa +)	Test location	Good Ground		
Test location	Good Ground (I	Test location	Good Ground	1	
Test location	Good Ground (3 Dpth/5 blows	300 KPa +) D/5 blows	Test location	Good Ground Dpth/5 blows	1	
Test location	Good Ground (3 Dpth/5 blows 120	D/5 blows	Test location	Good Ground Dpth/5 blows 120	D/5 blows	
Test location	Good Ground (3 Dpth/5 blows 120 190	D/5 blows	Test location	Good Ground Dpth/5 blows 120 220	1 D/5 blows	
Test location	Good Ground (3 Dpth/5 blows 120 190 250	D/5 blows 70 60	Test location	Dpth/5 blows 120 220 360	100 140	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320	70 60 70	Test location	Good Ground Dpth/5 blows 120 220 360 500	100 140 140	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480	70 60 70 160	Test location	Dpth/5 blows 120 220 360 500 600	100 140 140 100	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550	70 60 70 160 70	Test location	Dpth/5 blows 120 220 360 500 600 700	100 140 140 140 100 100	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550 590	70 60 70 160 70 40	Test location	Good Ground Dpth/5 blows 120 220 360 500 600 700 860	100 140 140 100 100 100	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550 590 640	70 60 70 160 70 40 50	Test location	Good Ground Dpth/5 blows 120 220 360 500 600 700 860 1000	100 140 140 140 100 100 160 140	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550 590 640 740	70 60 70 160 70 40 50	Test location	Good Ground Dpth/5 blows 120 220 360 500 600 700 860 1000 1130	100 140 140 100 100 100 160 140 130	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550 590 640 740 820	70 60 70 160 70 40 50 100 80	Test location	Good Ground Dpth/5 blows 120 220 360 500 600 700 860 1000	100 140 140 140 100 100 160 140	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550 590 640 740 820 890	70 60 70 160 70 40 50 100 80 70	Test location	Good Ground Dpth/5 blows 120 220 360 500 600 700 860 1000 1130	100 140 140 100 100 100 160 140 130	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550 590 640 740 820 890 950	70 60 70 160 70 40 50 100 80 70 60	Test location	Good Ground Dpth/5 blows 120 220 360 500 600 700 860 1000 1130	100 140 140 100 100 100 160 140 130	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550 590 640 740 820 890 950 980	70 60 70 160 70 40 50 100 80 70 60 30	Test location	Good Ground Dpth/5 blows 120 220 360 500 600 700 860 1000 1130	100 140 140 100 100 100 160 140 130	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550 590 640 740 820 890 950 980 1030	70 60 70 160 70 40 50 100 80 70 60 30 50	Test location	Good Ground Dpth/5 blows 120 220 360 500 600 700 860 1000 1130	100 140 140 100 100 100 160 140 130	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550 590 640 740 820 890 950 980 1030 1100	70 60 70 160 70 40 50 100 80 70 60 30 50 70	Test location	Good Ground Dpth/5 blows 120 220 360 500 600 700 860 1000 1130	100 140 140 100 100 100 160 140 130	
Test location	Good Ground (3 Dpth/5 blows 120 190 250 320 480 550 590 640 740 820 890 950 980 1030	70 60 70 160 70 40 50 100 80 70 60 30 50	Test location	Good Ground Dpth/5 blows 120 220 360 500 600 700 860 1000 1130	100 140 140 100 100 100 160 140 130	

	Topsoil			Topsoil	
	Good Ground (300 Kb2 +)		Good Ground	(300 Kb2 +)
Test location	5	-	Test location	Good Ground	
rest location	Dpth/5 blows	D/5 blows	Test location	Dpth/5 blows	
	190	D/3 blows		200	D/3 blows
		100			120
	290	100		320	120
	400	110		420	100
	480	80		580	160
	520	40		680	100
	590	70		780	100
	650	60		880	200
	710	60		990	110
	800	90		1180	190
	900	100			
	990	90			
	1090	100			
	1190	100			
	1250	60			
	Topsoil			Topsoil	
	Good Ground (300 KPa +)		Good Ground	(300 KPa +)
Test location	7		Test location	8	
rest location	Dpth/5 blows	D/5 blows	Test location	Dpth/5 blows	
	180	D/ J DIOWS		200	D/3 blows
		200			350
	380			450	250
	650	270		780	330
	940	290		900	120
	1050	110		1020	120
	1300	250		1200	180
	Topsoil			Topsoil	
	Good Ground (300 Kba +)			(300 KB2 +)
Test location	9		Test location	Good Ground (300 KPa +	
Test location	Dpth/5 blows	D/5 blows	Test location	Dpth/5 blows	
	300	D/3 blows		150	D/3 blows
	680	200		200	50
		380			
	980	300		260	60
	1300	320		300	40
				380	80
				500	120
				600	100
				680	80
				720	40
				820	100
				900	80
				900 1020	80 120

Raglan Geotech 238 Waimaori Rd Raglan

	Topsoil			Topsoil	
	Good Ground (300 KPa +)			Good Ground (300 KPa +)	
Test location	11		Test location	12	
	Dpth/5 blows	D/5 blows		Dpth/5 blows	D/5 blows
	290			200	
	500	210		350	150
	680	180		520	170
	790	110		650	130
	840	50		800	150
	920	80		880	80
	1020	100		970	90
	1220	200		1020	50
				1110	90
				1200	90

Geotechnical Investigation 137 Rotowaro Rd Huntly Raglan Geotech 238 Waimaori Rd Raglan

References and documents used in this report

Kear D, Schofield JC 1978: *Geology of the Ngaruawahia Subdivision*. New Zealand Geological Survey Bulletin 88

MacGregor, S., 2019: High Level Review of Geotechnical Aspects Relating to Land Development Puketirini

MBIE, 2018: Earthquake Geotechnical Engineering Practice Series

NZGS publication: Guideline for Hand-held Shear Vane Test

NZGS publication: Field Description of Soil and Rock

NZS 4402,1986: Methods of Testing Soils for Civil Engineering Purposes

NZS 3604,2011: Timber Framed Buildings

WLASS: The Regional Infrastructure Technical Specification (RITS)

Steven L. Hall , Andrew Nicol , Tim A. Moore & Kari N. Bassett (2006): *Timing of normal faulting in the Waikato Coal Measures, New Zealand, and its implications for coal-seam geometry*, New Zealand Journal of Geology and Geophysics, 49:1, 101-113, DOI: 10.1080/00288306.2006.9515151

Wainui Environmental, 2020: Subdivision Concept Plan