**APPENDIX A – EXISTING & PROPOSED CONTOURS** 







# OHINEWAI STRUCTURE PLAN

Date: 03 October 2019 | Revision J Drawing Number: 1805\_018 Plan prepared by Adapt Studio Ltd for Gaze Property Solutions









## **APPENDIX B – WRC COMMUNITY GATE OPERATIONS**



#### TE ONETEA GATE OPERATION

Action is determined primarily by the relationship between the Waikato River level at the gate and the Lake Waikare level.

| Situation                                                                   | Act  |
|-----------------------------------------------------------------------------|------|
| Waikato River level is below Lake Waikare Levels                            | Te ( |
| Waikato River level is above Lake Waikare Level but below<br>RL 7.00 metres | Te ( |
| Waikato River level is above Lake Waikare Level and<br>above RL 7.00 metres | Te ( |

#### WAIKARE GATE OPERATION

| Action is determined by the relationship between the Laic | C LC            |
|-----------------------------------------------------------|-----------------|
| Season                                                    | A               |
| April 1 to September 30<br>RL 5.50 metres                 | Ga<br>wi<br>5.4 |
| October 1 to December 31<br>RL 5.65 metres                | Ga<br>wi<br>5.: |
| anuary 1 to March 31<br>RL 5.60 metres                    | Ga<br>wi<br>5.: |
| Situation                                                 | A               |
| Whangamarino Gate is closed                               | Wa<br>clo       |
| Rangiriri Spillway is operating                           | Wa<br>clo       |

#### WHANGAMARINO GATE OPERATION

| Action is determined by the relationship between the Whanga |           |  |  |  |  |
|-------------------------------------------------------------|-----------|--|--|--|--|
| Situation                                                   | Ac        |  |  |  |  |
| Waikato River level is above Whangamarino River Level       | Wh<br>oth |  |  |  |  |
| Waikato River level is below Whangamarino River Level       | Wh        |  |  |  |  |

| WAIKARE GATE FISH PASS              |        |
|-------------------------------------|--------|
| Situation                           | Actio  |
| Lake is operating under a flood.    | Fish p |
| Lake is at or below RL 5.40 meters. | Fish p |
| Lake is operating in normal range.  | Fish p |

Reference: EWDOCS n1348507 v2 Lake Waikare system structures mitigation management plan - Lower Waikato Waipa flood control

#### tion

- Onetea gate will be closed
- Onetea gate will be open
- Onetea gate will be closed

## Action is determined by the relationship between the Lalce Level and the appropriate seasonal Target Level.

#### ction

ate opening/closing levels and apertures are to be set ith the objective of keeping the Lake level between RL's .40 and 5.60 metres.

ate opening/closing levels and apertures are to be set ith the objective of keeping the Lake level between RL's .55 and 5.75 metres.

ate opening/closing levels and apertures are to be set vith the objective of keeping the Lake level between RL's .50 and 5.70 metres.

#### ction

/aikare Gate is then closed. Te Onetea Gate is also osed.

/aikare Gate is then closed. Te Onetea Gate is also osed.

#### amarino River Level and the Waikato River Level.

#### tion

hangamarino gate will be closed, unless agreed herwise by key parties.

hangamarino gate is opened.

bass gate is closed.

bass gate is closed.

bass gate is opened.

APPENDIX C – STAKEHOLDER ENGAGEMENT RECORDS / MEETING MINUTES



#### **To** Mark Pennington Tonkin + Taylor (T+T) / Waikato Regional Council (WRC)

Circulation: Woods, WRC

From Woods Ajay Desai – Senior Stormwater Modeller

W-REF: P19-186 13 September 2019

## Meeting Minutes - 12/09/2019

| Location    | Microsoft | Microsoft Team Meeting                |  |                       |  |  |
|-------------|-----------|---------------------------------------|--|-----------------------|--|--|
| Time & Date |           | 12/09/2019 <b>Taken by</b> Ajay Desai |  | Ajay Desai            |  |  |
| Attendees   | Initials  | Name                                  |  | Company               |  |  |
|             | AD        | Ajay Desai                            |  | Woods                 |  |  |
|             | MP        | Mark Pennington                       |  | T+T / WRC             |  |  |
|             | SG        | Sakti Gounder                         |  | Woods                 |  |  |
|             | PW        | Pranil Wadan                          |  | Woods                 |  |  |
| Apologies   | Initials  | Name                                  |  | Company               |  |  |
|             | DG        | David Gaze                            |  | Gaze Holdings Limited |  |  |
|             |           |                                       |  |                       |  |  |

## 88 Lumsden Road/231 Tahuna Road, Ohinewai

## Proposal / Introduction

Mark Pennington has been engaged by Waikato Regional Council to review the modelling completed by Woods (working on behalf of Ambury Properties Ltd) for the proposed development at 88 Lumsden Road/231 Tahuna Road, Ohinewai. Findings will be discussed and shared with WRC. This meeting was the first model review discussion meeting to agree on items listed below.

## Minutes

| Actio | on Items                                                                                                                                                                           | Responsibility | Status                                                  | Agreement between<br>Reviewer and Modeller |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------|--------------------------------------------|
| a)    | Findings to the review will be discussed and shared with WRC                                                                                                                       | MP             | Ongoing                                                 | Agreed                                     |
| b)    | Stormwater drains being surveyed, to be included in the model (to be represented in 2D)                                                                                            | AD             | Ongoing                                                 |                                            |
| c)    | Check the DHI model vertical datum - possibly Moturiki 1953                                                                                                                        | AD / MP        | Ongoing                                                 |                                            |
| d)    | Survey datum to be checked and confirmed to match DHI model                                                                                                                        | AD             | Ongoing                                                 |                                            |
|       |                                                                                                                                                                                    |                |                                                         |                                            |
| Pre   | e-Development Model Development discussions                                                                                                                                        |                |                                                         |                                            |
| e)    | 2D model boundary extent as shown in Appendix A                                                                                                                                    |                | Completed                                               | Agreed                                     |
| f)    | 2D model extent to be subtracted from the contributing NAM runoff catchment (catchment 25)                                                                                         | AD             | Ongoing                                                 | Agreed                                     |
| g)    | Infiltration losses to be modelled for 2D domain once predevelopment model is validated against the Waikato River model                                                            | AD             | Ongoing                                                 | Agreed                                     |
| h)    | Stormwater drain survey data to be included in the model when available                                                                                                            |                | Waiting for drain<br>survey to be<br>completed          | Agreed                                     |
| i)    | River Waikato (along with the associated lateral link) trimmed as per the 2D model extent                                                                                          |                | Completed                                               | Agreed                                     |
| j)    | River Waikato stop banks within 2D extents to be modelled as per DHI model                                                                                                         |                | Completed                                               | Agreed                                     |
| k)    | Rangiri Spillway to be modelled as per DHI model in 1D                                                                                                                             |                | Completed                                               | Agreed                                     |
| l)    | 1D model extent to include modelled streams to include all control gates - Lake Waikare<br>Control gate, Whangamarino Control gate, Te Onetea Control gate                         |                | Completed                                               | Agreed                                     |
| m)    | All the control gates to be included in the model based on the DHI model (Lake Waikare<br>Control gate, Whangamarino Control gate, Te Onetea Control gate)                         |                | Completed                                               | Agreed                                     |
| n)    | Lake Waikere to be modelled in 1D based on Waikato River DHI model as additional storage in cross section data                                                                     |                | Completed                                               | Agreed                                     |
| o)    | Level storage relationship to be checked against DEM elevations to avoid double counting of storage. Area represented in 2D domain to be subtracted from Lake Waikere storage.     | AD             | Ongoing                                                 | Agreed                                     |
| p)    | DHI model to be checked for Lake Waikere storage being modelled appropriately                                                                                                      | AD             | Ongoing                                                 | Agreed                                     |
| q)    | Lake Ohinewai included in 2D model using depth contours provided by WRC                                                                                                            |                | Completed                                               | Agreed                                     |
| r)    | Hydraulic grade between Lake Rotokawau and Lake Waikere to be checked against connecting stormwater drain survey data is available                                                 |                | To be checked<br>when drain survey<br>data is available | Agreed                                     |
|       |                                                                                                                                                                                    |                |                                                         |                                            |
| Ро    | st Development Model Development Scenarios:                                                                                                                                        |                |                                                         |                                            |
| s)    | To be discussed on completion of Pre-Development scenario                                                                                                                          | AD / MP        | Planned                                                 | Agreed                                     |
|       |                                                                                                                                                                                    |                |                                                         |                                            |
| Sto   | op bank breach scenarios:                                                                                                                                                          |                |                                                         |                                            |
| t)    | To be discussed on completion of Pre-Development scenario. Initial thoughts:                                                                                                       | AD / MP        | Planned                                                 | Agreed                                     |
| u)    | Calculate water level differences between River Waikato and eastern land adjoining the stop<br>bank along the stopbank length to assess the critical location for stopbank breach. | AD / MP        | Planned                                                 | Agreed                                     |
|       |                                                                                                                                                                                    |                |                                                         |                                            |

Ajay Desai

Senior Stormwater Modeller

Approved as true and accurate record of meeting



## Appendix A





#### **To** Mark Pennington Tonkin + Taylor (T+T) / Waikato Regional Council (WRC)

**From** Woods Ajay Desai – Senior Stormwater Modeller

Circulation: Woods, WRC

W-REF: P19-186 10 October 2019

## Meeting Minutes - 12/09/2019

## 88 Lumsden Road/231 Tahuna Road, Ohinewai

| Location    | Microsoft T | oft Team Meeting |          |                       |  |               |  |       |
|-------------|-------------|------------------|----------|-----------------------|--|---------------|--|-------|
| Time & Date |             | 10/10/2019       | Taken by | Ajay Desai            |  |               |  |       |
| Attendees   | Initials    | Name             |          | Company               |  |               |  |       |
|             | AD          | Ajay Desai       |          | Ajay Desai Woods      |  | Woods         |  |       |
|             | MP          | Mark Pennington  |          | T+T / WRC             |  |               |  |       |
|             |             |                  |          |                       |  |               |  |       |
|             |             |                  |          |                       |  |               |  |       |
| Apologies   | Initials    | Name             |          | Company               |  |               |  |       |
|             | DG          | David Gaze       |          | Gaze Holdings Limited |  |               |  |       |
|             | SG          | Sakti Gounder    |          | Sakti Gounder         |  | Sakti Gounder |  | Woods |
|             | PW          | Pranil Wadan     |          | Woods                 |  |               |  |       |
|             |             |                  |          |                       |  |               |  |       |

## Proposal / Introduction

Mark Pennington has been engaged by Waikato Regional Council to review the modelling completed by Woods (working on behalf of Ambury Properties Ltd) for the proposed development at 88 Lumsden Road/231 Tahuna Road, Ohinewai. Findings will be discussed and shared with WRC. This meeting was the third model review discussion meeting to agree on items listed below.



## Minutes

| Actio | on Items                                                                                                                                                                                                  | Responsibility | Status    | Agreement<br>between<br>Reviewer and<br>Modeller |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|--------------------------------------------------|--|
| Pre   | -Development Model Development discussions                                                                                                                                                                |                |           |                                                  |  |
| a)    | Update the maximum dx for Waikato River to 10<br>(DHI model uses 10,000)                                                                                                                                  | AD             | Completed | Agreed                                           |  |
| b)    | Update the Mike 11 initial water levels for surveyed drains as follows:                                                                                                                                   | AD             | Completed | Agreed                                           |  |
| Dra   | in 1 and Drain 2 – 4.9mRL; Drain 3 – 5.0mRL                                                                                                                                                               |                |           |                                                  |  |
| c)    | Lake Waikare and Lake Rotokawau modelled as<br>1D without any storage associated with Lake<br>Rotokawau (no data available and surveying is<br>difficult with no access)                                  | AD             | Completed | Agreed                                           |  |
| d)    | Refer to WRC's Modelling Specifications for Curve<br>Number method for subcatchment based<br>modelling approach instead of rain on grid to<br>represent losses associated with land uses<br>appropriately | AD             | Ongoing   | Agreed                                           |  |
| e)    | Compare CN approach with wider DHI model to<br>assure they have similar results (minor differences<br>are expected with CN and NAM Runoff methods)                                                        | AD             | Ongoing   | Agreed                                           |  |
| Pos   | st Development Model Development Scenarios:                                                                                                                                                               |                |           |                                                  |  |
| f)    | To be discussed on completion of Pre-<br>Development scenario                                                                                                                                             | AD / MP        | Planned   | Agreed                                           |  |
| Sto   | p bank breach scenarios:                                                                                                                                                                                  |                |           |                                                  |  |
| g)    | Calculate water level differences between River<br>Waikato and eastern land adjoining the stop bank<br>along the stopbank length to assess the critical<br>location for stopbank breach.                  | AD             | Planned   | Agreed                                           |  |
| h)    | Check model results to the south west of site if flows from breach would enter site                                                                                                                       | AD             | Planned   | Agreed                                           |  |

### Ajay Desai

Senior Stormwater Modeller

Approved as true and accurate record of meeting



#### **To** Mark Pennington Tonkin + Taylor (T+T) / Waikato Regional Council (WRC)

Circulation: Woods, WRC

**From** Woods Ajay Desai – Senior Stormwater Modeller

W-REF: P19-186 24 October 2019

## Meeting Minutes - 23/10/2019

## 88 Lumsden Road/231 Tahuna Road, Ohinewai

| Location    | Microsoft T | oft Team Meeting |          |                       |  |       |
|-------------|-------------|------------------|----------|-----------------------|--|-------|
| Time & Date |             | 23/10/2019       | Taken by | Ajay Desai            |  |       |
| Attendees   | Initials    | Name             |          | Company               |  |       |
|             | AD          | Ajay Desai       |          | Woods                 |  |       |
|             | MP          | Mark Penningto   | 'n       | T+T / WRC             |  |       |
|             |             |                  |          |                       |  |       |
|             |             |                  |          |                       |  |       |
| Apologies   | Initials    | Name             |          | Company               |  |       |
|             | DG          | David Gaze       |          | Gaze Holdings Limited |  |       |
|             | SG          | Sakti Gounder    |          | Sakti Gounder         |  | Woods |
|             | PW          | Pranil Wadan     |          | Woods                 |  |       |
|             |             |                  |          |                       |  |       |

## Proposal / Introduction

Mark Pennington has been engaged by Waikato Regional Council to review the modelling completed by Woods (working on behalf of Ambury Properties Ltd) for the proposed development at 88 Lumsden Road/231 Tahuna Road, Ohinewai. Findings will be discussed and shared with WRC. This meeting was the third model review discussion meeting to agree on items listed below.



## Minutes

| Actio | n Items                                                                                                                                                                                                                                                                                                                                                                                                               | Responsibility | Status  | Agreement<br>between<br>Reviewer and<br>Modeller |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------------------------------------------------|
| Pre   | -Development Model Development discussions                                                                                                                                                                                                                                                                                                                                                                            |                |         |                                                  |
| a)    | Waikato River model built by DHI gives a maximum<br>water level of approximately 8.5mRL around Lake<br>Waikere which is higher than the spillway which would<br>operate at 8mRL. Hence the model results cannot be<br>relied upon for this assessment and Woods should<br>continue using the local model that has been built using<br>Curve Number approach (as per Waikato Stormwater<br>Runoff Modelling Guideline) | AD / MP        |         | Agreed                                           |
| b)    | Use a constant boundary condition of 8mRL for Lake<br>Waikere and exclude interactions between River<br>Waikato and Lake Waikare which operates above 8mRL                                                                                                                                                                                                                                                            | AD / MP        |         | Agreed                                           |
| c)    | River Waikato and other streams to be excluded from<br>the model as there is no interaction between River<br>Waikato and proposed site (flood effects are only from<br>Lake Waikare). DHI model to be used as reference only.                                                                                                                                                                                         | AD / MP        |         | Agreed                                           |
| d)    | AD to document DHI model results around Lake<br>Waikare in an email and circulate to MP and Rick<br>Liefting (WRC).                                                                                                                                                                                                                                                                                                   | AD             |         | Agreed                                           |
| Pos   | t Development Model Development Scenarios:                                                                                                                                                                                                                                                                                                                                                                            |                |         |                                                  |
| e)    | To be discussed on completion of Pre-Development scenario                                                                                                                                                                                                                                                                                                                                                             | AD / MP        | Planned | Agreed                                           |
| Sto   | p bank breach scenarios:                                                                                                                                                                                                                                                                                                                                                                                              |                |         |                                                  |
| f)    | 2 locations identified for breach discussed and agreed<br>to be tested in one model run, if needed these can be<br>tested separately following discussion between AD and<br>MP.                                                                                                                                                                                                                                       | AD             | Agreed  | Agreed                                           |
| g)    | Use steady state analysis with a breach of approximately<br>30m by applying a constant water level of 10mRL at<br>River Waikato and 8mRL at Lake Waikare for checking<br>the impact of breach on proposed development. This is<br>not an effects assessment for comparing pre and post<br>development scenarios but only to understand and<br>highlight risk by breach of stop bank.                                  | AD             | Planned | Agreed                                           |

### Ajay Desai

Senior Stormwater Modeller

Approved as true and accurate record of meeting



#### **To** Mark Pennington Tonkin + Taylor (T+T) / Waikato Regional Council (WRC)

From Woods Ajay Desai – Senior Stormwater Modeller

Circulation: Woods, WRC

W-REF: P19-186 25 October 2019

## Meeting Minutes - 25/10/2019

## 88 Lumsden Road/231 Tahuna Road, Ohinewai

| Location    | Microsoft T         | oft Team Meeting |          |            |  |  |
|-------------|---------------------|------------------|----------|------------|--|--|
| Time & Date | 23/10/2019 Taken by |                  | Taken by | Ajay Desai |  |  |
| Attendees   | Initials            | Name             |          | Company    |  |  |
|             | AD                  | Ajay Desai       |          | Woods      |  |  |
|             | RL                  | Rick Liefting    |          | WRC        |  |  |
|             | GB                  | Ghassan Basheer  |          | WRC        |  |  |
|             | SG                  | Sakti Gounder    |          | Woods      |  |  |
| Apologies   | Initials            | Name             |          | Company    |  |  |
|             | MP                  | Mark Penningto   | on       | T+T / WRC  |  |  |
|             |                     | Ť                |          |            |  |  |
|             |                     |                  |          |            |  |  |
|             |                     |                  |          |            |  |  |

## Proposal / Introduction

This meeting was arranged between WRC and Woods to discuss the modelling approach taken and agreed with Mark Pennington has been engaged by Waikato Regional Council to review the modelling completed by Woods for the proposed development at 88 Lumsden Road/231 Tahuna Road, Ohinewai.

Findings will be discussed and shared with WRC. This meeting was the fourth model review discussion meeting to agree on items listed below.



## Minutes

| Actio | on Items                                                                                                                                                                                                                                                                                                                                                                                                                          | Responsibility | Status  | Agreement<br>between<br>Reviewer and<br>Modeller |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------------------------------------------------|
| Pre   | -Development Model Development discussions                                                                                                                                                                                                                                                                                                                                                                                        |                |         |                                                  |
| a)    | Waikato River model built by DHI gives a maximum<br>water level of approximately 8.5mRL around Lake<br>Waikere which is higher than the spillway which would<br>operate at 8mRL. Hence the model results cannot be<br>relied upon for this assessment and Woods should<br>continue using the local model that has been built<br>using Curve Number approach (as per Waikato<br>Stormwater Runoff Modelling Guideline).            | AD             | Done    | Agreed                                           |
| b)    | Use a constant boundary condition of 8mRL for Lake<br>Waikere and exclude interactions between River<br>Waikato and Lake Waikare which operates above 8mRL                                                                                                                                                                                                                                                                        | AD             | Done    | Agreed                                           |
| c)    | River Waikato and other streams to be excluded from<br>the model as there is no interaction between River<br>Waikato and proposed site (flood effects are only from<br>Lake Waikare). DHI model to be used as reference only.                                                                                                                                                                                                     | AD             | Done    | Agreed                                           |
| Pos   | st-Development Model Development discussions                                                                                                                                                                                                                                                                                                                                                                                      |                |         |                                                  |
| d)    | WRC and Woods have agreed that the proposed<br>development would not be discharging to any of the<br>existing WRC drains. This will be reflected in the<br>ongoing Stormwater Management, design and<br>modelling.                                                                                                                                                                                                                | AD/SG          |         | Information<br>only                              |
| Sto   | p bank breach scenarios:                                                                                                                                                                                                                                                                                                                                                                                                          |                |         |                                                  |
| e)    | 2 locations identified for breach discussed and agreed<br>to be tested in one model run, if needed these can be<br>tested separately following discussion between AD and<br>MP.                                                                                                                                                                                                                                                   | AD             | Ongoing | Agreed                                           |
| f)    | Use steady state analysis with a breach of<br>approximately 30m by applying a constant water level<br>extracted from the DHI Waikato River model using<br>RCP8.5 scenario and 8mRL at Lake Waikare for<br>checking the impact of breach on proposed<br>development. This is not an effects assessment for<br>comparing pre and post development scenarios but<br>only to understand and highlight risk by breach of stop<br>bank. | AD             | Ongoing | Agreed                                           |

| g) | Include earth bund around Rangiriri Spillway (part of<br>Flood Management Emergency Plan) upstream end the<br>spillway across the state highway terminating at the<br>railway embankment to have no overland flow around<br>the highway corridor at this location. Details provided<br>by GB. | AD | Ongoing | Agreed |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|--------|
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|--------|

#### Ajay Desai

Senior Stormwater Modeller

Approved as true and accurate record of meeting

#### Mercury Energy Fraser Graafhuis Level 3/17 Grantham Street Hamilton 3204

То

From

Woods Sakti Gounder – Stormwater Engineer

W-REF: P18-258 16 September 2019

## Memorandum

### 88 Lumsden Road/231 Tahuna Road – Stormwater Summary

This memo has been written to summarise the stormwater modelling proposed to be undertaken for the site at 88 Lumsden Road and 231 Tahuna Road, Ohinewai. Both addresses are part of the development site held by the New Zealand Comfort Group (NZCG), a subsidiary of Ambury Properties Ltd (APL).

APL are intending to develop both sites to include industry, factory outlet shops, a service centre and community focused shops/activities and a medium density residential development.

This memo summarises the stormwater flood modelling strategy for the proposed development. The flood modelling strategy has been formulated to quantify the effects of development on the water levels in Lake Waikare, Lake Rotokawau and neighbouring sites.

### 1. Modelling approach

The site lies to the east of the Waikato Expressway and the Waikato River. The site location is indicated in green in Figure 1. The site is located to the east of the stop banks along the Waikato River.

Three modelling scenarios are proposed to be run:

- Pre-development model: to quantify the existing scenario.
- Post development model: to quantify the effects of development. Effects includes any increases in water level or flood extents within Lake Waikare, Lake Rotokawau or neighbouring sites.
- Post development optioneering models: to quantify the effects of development across Lake Waikare/Lake Rotokawau and other neighbouring sites with proposed stormwater management devices in place.
  - It should be noted that the post development optioneering models will quantify flood effects with stormwater attenuation devices in place.
- An emergency management scenario: to quantify effects in the instance of a damn/stop bank breach. Flood results to quantify inundation risk to the development.

Waikato Regional Council (WRC) have requested that all future/post development models use the RCP6.0 temperature increase to model future rainfall scenarios with an additional sensitivity analysis to be done for RCP8.5 temperature increase.

RCP6.0 and RCP8.5 are models to represent increase in rainfall resulting from climate change. RCP stands for representative concentration pathways for the greenhouse gas emissions currently in the atmosphere. RCP6.0 represents a 'stabilisation pathway' scenario, where the effect of greenhouse gas emissions stabilises after 2100. This is a conservative estimate of increases in rainfall due to climate change.

RCP8.0 represents a 'business as usual' concentration pathway, with very high greenhouse gas concentrations by 2100 and beyond. This represents extreme increases in temperature and will result in a conservative estimate of flood levels for the project. It should be noted that the RCP8.0 scenario will only be run as part of a sensitivity analysis.

WRC are kept involved and informed throughout the project as Woods are working collaboratively with Mark Pennington who has been appointed as the reviewer by WRC.



Figure 1: Site location

#### 2. Modelled extent

Woods have received Waikato Regional Council's (WRC's) Mike by DHI model of the Waikato River. The modelling scope includes running a 'cut down' version of the model to set a baseline scenario to be used to quantify the effects of the development on Lake Waikare, Lake Rotokawau and other land holders in the area.

The DHI model is a 1D model of the Waikato River only and does not include the rivers and lakes to the east of the expressway. Woods have defined a modelling approach, which has been shared with WRC. This section summarises the modelling approach.

Woods propose to take the existing 1D model and incorporate the 2D extents to quantify the effects of filling in the site. The proposed extents of the 1D/2D model can be seen in Figure 2.

Figure 2 shows the following features:

- The proposed model extent in white;
- Farm drains- to be modelled in 2D highlighted with red lines;
- Lake Ohinewai to be modelled in 2D as lake depths are available;
- Lake Rotokawau representation to be discussed with WRC;
- Lake Waikare to be modelled as a 1D storage node with spillway and flood gate as per WRC' Waikato River DHI model;
- Boundary conditions:
  - o Inflows into Lake Waikare within the proposed model extent
  - o Tailwater boundary conditions to be considered from Lake Waikare; and
  - o Tailwater boundary conditions in the Waikato at the outlet from the model extent

- Alternate boundary condition for Lake Waikare to be confirmed in discussion with WRC (described in section 3)
- Location of the proposed stop banks to the west of the Waikato Expressway as per WRC 's Waikato River DHI model (shown in green in Figure 3 below)
- The proposed model also includes the gates as shown in Figure 2 below and gate operations are modelled as per the Waikato River model.



Figure 2: Proposed model extents



Figure 3: Control Gate locations

## 3. Other Considerations

Based on records of the Waikato Regional Flood Event of 9 – 20 July 1998, the following information is known about historical flooding in Lake Waikare:

- The lake level in the 1998 event is approximately 6.29 m RL.
- The lake levels are artificially controlled between 5.50-5.65 m RL.
- The design flood level of the land drainage scheme is 7.37 m RL.

• The spillway for Lake Waikare is at 8.00 mRL. This means that water levels in Lake Waikare will reach a maximum of 8.00 mRL.

There will be proposed topographical changes to the site following development, including the filling in of existing floodplain storage to raise the site out of the floodplain, as well as increases in runoff volume resulting from on-site intensification. All stormwater management devices on site will address both flood displacement volume and attenuation volume from the increase in impervious area.

**APPENDIX D – CATCHMENT EXTENTS** 





**APPENDIX E – MODELLING INPUTS** 



| ⊐<br>⊒⊃<br>rint | -<br>-<br>-<br>S | - T<br>- T<br>elect | Share            | Switch Map     | Zoom To Point |     |
|-----------------|------------------|---------------------|------------------|----------------|---------------|-----|
| X               | 2                | Print               |                  |                | * ×           |     |
| and a           | 3                | Map Title:          | LocalMap         | s Print        |               | -   |
| M               | 5                | Layout:             | WRCWebM          | laps_A3_Landso | cape 💽        | -   |
| 5r              | ~                | Format:             | JPG              |                | -             |     |
| EZ              | 11               | Preserve:           | o map scale      | 💿 map exter    | nt            |     |
| ZA              | Yr               | Force scale         | ə: )             | curren         | t             | -   |
| Tra             | C                | Print Detai         | ils Print Result | s              |               | -   |
| Z               | 1                |                     |                  |                |               | 1   |
| 5               | A                |                     |                  |                |               | -   |
| 21              | (                |                     |                  |                |               | 1   |
| 5.Y             | X                |                     |                  |                |               |     |
| T               | /                |                     |                  |                |               |     |
| the             |                  |                     |                  |                |               | 1   |
| 7               | 5.               |                     |                  |                |               | ł   |
| AV.             | -C               |                     |                  |                |               | -   |
| 12/18           | 7                |                     |                  |                |               |     |
| 42              | L'à              |                     |                  |                |               | -   |
| FG              | 13               |                     |                  |                |               |     |
| Vie             | 26               |                     |                  |                |               |     |
| 5               |                  |                     |                  |                |               |     |
| TET (           | 5                |                     |                  |                |               |     |
| 2 ~             | 2                |                     |                  |                |               | 1   |
| ~               | 1                |                     |                  |                |               |     |
|                 | ~                |                     |                  |                |               |     |
|                 |                  |                     |                  |                |               |     |
| 1-              | -6               |                     |                  |                |               |     |
| -               | 1                |                     |                  |                |               | 1   |
|                 |                  |                     |                  |                |               |     |
|                 | T                |                     |                  |                |               |     |
|                 |                  |                     |                  |                |               | 1   |
|                 |                  |                     |                  |                |               |     |
| -               |                  |                     |                  |                |               | 1   |
| 2               | 5                |                     |                  |                |               | 2   |
|                 | 1                |                     |                  |                |               | 1   |
|                 |                  |                     |                  |                |               | 101 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HIRDS V4 De<br>Sitename: O                                                                                                                                                                                                                | epth-Durat<br>hinewai_C<br>system: W | ion-Freque<br>Centroid<br>GS84 | ncy Results        |                   |               |              |                        |                 |              |              |              |              |              |              |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|--------------------|-------------------|---------------|--------------|------------------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|-----|
| District with the series of t | Longitude: 1                                                                                                                                                                                                                              | system: w<br>175.185<br>7.4834       | G584                           |                    |                   |               |              |                        |                 |              |              |              |              |              |              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DDF Mode F                                                                                                                                                                                                                                | Parameter<br>Values:                 | c<br>0.000258                  | d<br>0.391302      | e<br>-0.01917     | f<br>0        | g<br>0.25    | h<br>53632 -0.         | i<br>00903 2.95 | 54586        |              |              |              |              |              |     |
| Description         Description <thdescription< th=""> <thdescription< th="">       &lt;</thdescription<></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                         | Example:                             | Duration (                     | ARI (yrs)<br>100   | x<br>3.178054     | y<br>4.600149 | Rain<br>146  | fall Depth (<br>5.0617 | mm)             |              |              |              |              |              |              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rainfall dept                                                                                                                                                                                                                             | ths (mm) :                           | : Historical                   | Data               |                   |               |              |                        |                 |              |              |              |              |              |              |     |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ARI /                                                                                                                                                                                                                                     | AEP<br>0.633                         | 10m<br>8.95                    | 20m<br>12.2        | 30m<br>14.5       | 1h<br>19.2    | 2h           | 6h<br>24.9             | 12h<br>36.4     | 24h<br>45.1  | 48h<br>54.8  | 72h<br>65.5  | 96h<br>72    | 1<br>76.8    | 20h<br>80.5  |     |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                         | 0.5                                  | 9.81<br>12.8                   | 13.4<br>17.5       | 15.9<br>20.8      | 21<br>27.5    |              | 27.3<br>35.8           | 39.9<br>52.2    | 49.4<br>64.7 | 60.1<br>78.7 | 71.8<br>94   | 79<br>103    | 84.2<br>110  | 88.3<br>116  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>20                                                                                                                                                                                                                                  | 0.1                                  | 15.1<br>17.5                   | 20.6<br>23.9       | 24.5<br>28.4      | 32.4<br>37.6  |              | 42.2<br>49             | 61.6<br>71.5    | 76.3<br>88.6 | 92.9<br>108  | 111<br>129   | 122<br>142   | 130<br>151   | 137<br>159   |     |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30<br>40                                                                                                                                                                                                                                  | 0.033                                | 19<br>20 1                     | 25.9               | 30.8              | 40.8          |              | 53.1<br>56.1           | 77.5            | 96.1<br>102  | 117          | 140<br>148   | 154          | 164<br>173   | 172          |     |
| Image         Image <t< td=""><td>50</td><td>0.02</td><td>21</td><td>28.6</td><td>34</td><td>45</td><td></td><td>58.5</td><td>85.5<br/>88.4</td><td>106</td><td>129</td><td>154</td><td>170</td><td>181<br/>187</td><td>190<br/>196</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                        | 0.02                                 | 21                             | 28.6               | 34                | 45            |              | 58.5                   | 85.5<br>88.4    | 106          | 129          | 154          | 170          | 181<br>187   | 190<br>196   |     |
| Desc     Cont     Desc     Lot     Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80<br>100                                                                                                                                                                                                                                 | 0.012                                | 22.8                           | 31.1               | 37                | 49            |              | 63.7<br>66.2           | 93.1<br>96.7    | 115          | 140          | 168          | 185          | 197          | 207          |     |
| Image     Image    Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image     Image    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250<br>Donth stand                                                                                                                                                                                                                        | 0.01                                 | 23.7<br>27.5                   | 37.5<br>37.5       | 44.6              | 59.1          |              | 76.9                   | 112             | 139          | 170          | 203          | 223          | 238          | 250          |     |
| 1.1         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2 <th1.2< th=""> <th1.2< th=""> <th1.2< th=""></th1.2<></th1.2<></th1.2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ARI A                                                                                                                                                                                                                                     | AEP                                  | 10m                            | 20m                | 30m               | 1h            | 2h           | 6h                     | 12h             | 24h          | 48h          | 72h          | 96h          | 17           | 20h          |     |
| I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I </td <td>2</td> <td>0.833</td> <td>1.1</td> <td>1.4</td> <td>1.5</td> <td>2.1</td> <td></td> <td>3.1</td> <td>5.6</td> <td>7.7</td> <td>12</td> <td>14</td> <td>18</td> <td>19</td> <td>19</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                         | 0.833                                | 1.1                            | 1.4                | 1.5               | 2.1           |              | 3.1                    | 5.6             | 7.7          | 12           | 14           | 18           | 19           | 19           |     |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>10</td><td>0.2</td><td>2.1</td><td>2.2</td><td>3.2</td><td>4.3</td><td></td><td>4.4<br/>5.7</td><td>9.3</td><td>13</td><td>20</td><td>25</td><td>24</td><td>30</td><td>31</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                        | 0.2                                  | 2.1                            | 2.2                | 3.2               | 4.3           |              | 4.4<br>5.7             | 9.3             | 13           | 20           | 25           | 24           | 30           | 31           |     |
| A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                        | 0.033                                | 3.3                            | 4.5                | 4.5               | 5.6           |              | 9                      | 12              | 18           | 26           | 32           | 36           | 38           | 40           |     |
| B         B         B         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40<br>50                                                                                                                                                                                                                                  | 0.025                                | 3.6                            | 5.1                | 5.7<br>6.2        | 7.4           |              | 10                     | 15<br>16        | 20           | 28           | 34<br>36     | 39<br>41     | 41<br>43     | 43<br>45     |     |
| 100     100     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60<br>80                                                                                                                                                                                                                                  | 0.017<br>0.012                       | 4.2<br>4.7                     | 5.9<br>6.7         | 6.7<br>7.5        | 8.8<br>9.9    |              | 12<br>13               | 17<br>19        | 23<br>25     | 31<br>33     | 38<br>40     | 43<br>46     | 45<br>48     | 47<br>50     |     |
| Nor-service         Nor-service        Nor-service        Nor-service       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100<br>250                                                                                                                                                                                                                                | 0.01<br>0.004                        | 5.1<br>7.2                     | 7.3<br>10          | 8.2<br>12         | 11<br>16      |              | 15<br>21               | 21<br>29        | 27<br>38     | 35<br>43     | 42<br>53     | 48<br>59     | 50<br>62     | 53<br>65     |     |
| 1 - 1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rainfall dept<br>ARI /                                                                                                                                                                                                                    | ths (mm) :<br>AEP                    | : RCP2.6 for<br>10m            | the period 20m     | 2031-2050<br>30m  | 1h            | 2h           | 6h                     | 12h             | 24h          | 48h          | 72h          | 96h          | 1            | 20h          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.58<br>2                                                                                                                                                                                                                                 | 0.633<br>0.5                         | 9.58<br>10.5                   | 13.1<br>14.3       | 15.5<br>17        | 20.5<br>22.6  |              | 26.6<br>29.2           | 38.4<br>42.2    | 47.2<br>51.9 | 57.1<br>62.7 | 67.7<br>74.4 | 74.2<br>81.6 | 78.9<br>86.8 | 82.6<br>90.8 |     |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>5<br/>10</td><td>0.2<br/>0.1</td><td>13.8<br/>16.3</td><td>18.8<br/>22.2</td><td>22.3<br/>26.4</td><td>29.6<br/>35</td><td></td><td>38.4<br/>45.3</td><td>55.4<br/>65.5</td><td>68.2<br/>80.6</td><td>82.3<br/>97.3</td><td>97.8<br/>116</td><td>107<br/>127</td><td>114<br/>135</td><td>119<br/>141</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>10                                                                                                                                                                                                                                   | 0.2<br>0.1                           | 13.8<br>16.3                   | 18.8<br>22.2       | 22.3<br>26.4      | 29.6<br>35    |              | 38.4<br>45.3           | 55.4<br>65.5    | 68.2<br>80.6 | 82.3<br>97.3 | 97.8<br>116  | 107<br>127   | 114<br>135   | 119<br>141   |     |
| 1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20<br>30                                                                                                                                                                                                                                  | 0.05<br>0.033                        | 18.9<br>20.5                   | 25.8<br>28         | 30.7<br>33.3      | 40.6<br>44.1  |              | 52.6<br>57.1           | 76.1<br>82.7    | 93.7<br>102  | 113<br>123   | 134<br>146   | 147<br>160   | 157<br>170   | 164<br>178   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40<br>50                                                                                                                                                                                                                                  | 0.025<br>0.02                        | 21.7<br>22.6                   | 29.6<br>30.9       | 35.2<br>36.7      | 46.6<br>48.6  |              | 60.4<br>63             | 87.4<br>91.2    | 108<br>112   | 130<br>135   | 154<br>161   | 169<br>176   | 180<br>188   | 188<br>196   |     |
| 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1    1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60<br>80                                                                                                                                                                                                                                  | 0.017<br>0.012                       | 23.4<br>24.6                   | 31.9<br>33.6       | 37.9<br>39.9      | 50.2<br>52.9  |              | 65.2<br>68.6           | 94.3<br>99.3    | 116<br>122   | 140<br>148   | 166<br>175   | 183<br>192   | 194<br>204   | 203<br>214   |     |
| Note         No         No        No        No        No<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100<br>250                                                                                                                                                                                                                                | 0.01<br>0.004                        | 25.6<br>29.7                   | 34.9<br>40.5       | 41.5<br>48.2      | 55<br>63.9    |              | 71.3<br>82.8           | 103<br>120      | 127<br>148   | 153<br>178   | 182<br>212   | 200<br>232   | 213<br>247   | 223<br>259   |     |
| 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rainfall dept<br>ARI /                                                                                                                                                                                                                    | ths (mm) :<br>AEP                    | : RCP2.6 for<br>10m            | the period 20m     | 2081-2100<br>30m  | 1h            | 2h           | 6h                     | 12h             | 24h          | 48h          | 72h          | 96h          | 1            | 20h          |     |
| 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </td <td>1.58<br/>2</td> <td>0.633<br/>0.5</td> <td>9.58<br/>10.5</td> <td>13.1<br/>14.3</td> <td>15.5<br/>17</td> <td>20.5<br/>22.6</td> <td></td> <td>26.6<br/>29.2</td> <td>38.4<br/>42.2</td> <td>47.2<br/>51.9</td> <td>57.1<br/>62.7</td> <td>67.7<br/>74.4</td> <td>74.2<br/>81.6</td> <td>78.9<br/>86.8</td> <td>82.6<br/>90.8</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.58<br>2                                                                                                                                                                                                                                 | 0.633<br>0.5                         | 9.58<br>10.5                   | 13.1<br>14.3       | 15.5<br>17        | 20.5<br>22.6  |              | 26.6<br>29.2           | 38.4<br>42.2    | 47.2<br>51.9 | 57.1<br>62.7 | 67.7<br>74.4 | 74.2<br>81.6 | 78.9<br>86.8 | 82.6<br>90.8 |     |
| No.     No. </td <td>5<br/>10</td> <td>0.2</td> <td>13.8<br/>16.3</td> <td>18.8</td> <td>22.3<br/>26.4</td> <td>29.6<br/>35</td> <td></td> <td>38.4<br/>45.3</td> <td>55.4<br/>65.5</td> <td>68.2<br/>80.6</td> <td>82.3<br/>97.3</td> <td>97.8<br/>116</td> <td>107<br/>127</td> <td>114<br/>135</td> <td>119<br/>141</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>10                                                                                                                                                                                                                                   | 0.2                                  | 13.8<br>16.3                   | 18.8               | 22.3<br>26.4      | 29.6<br>35    |              | 38.4<br>45.3           | 55.4<br>65.5    | 68.2<br>80.6 | 82.3<br>97.3 | 97.8<br>116  | 107<br>127   | 114<br>135   | 119<br>141   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                        | 0.05                                 | 18.9                           | 25.8               | 30.7              | 40.6<br>44.1  |              | 52.6<br>57.1           | 76.1<br>82.7    | 93.7<br>102  | 113<br>123   | 134<br>146   | 147<br>160   | 157<br>170   | 164<br>178   |     |
| n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n </td <td>40</td> <td>0.025</td> <td>21.7</td> <td>29.6<br/>30.9</td> <td>35.2<br/>36.7</td> <td>46.6<br/>48.6</td> <td></td> <td>60.4<br/>63</td> <td>87.4<br/>91.2</td> <td>108<br/>112</td> <td>130<br/>135</td> <td>154<br/>161</td> <td>169<br/>176</td> <td>180<br/>188</td> <td>188<br/>196</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                                                                                                                                                                                                                                        | 0.025                                | 21.7                           | 29.6<br>30.9       | 35.2<br>36.7      | 46.6<br>48.6  |              | 60.4<br>63             | 87.4<br>91.2    | 108<br>112   | 130<br>135   | 154<br>161   | 169<br>176   | 180<br>188   | 188<br>196   |     |
| 100         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101 <td>60<br/>80</td> <td>0.017</td> <td>23.4</td> <td>31.9</td> <td>37.9</td> <td>50.2</td> <td></td> <td>65.2<br/>68.6</td> <td>94.3</td> <td>116</td> <td>140</td> <td>166</td> <td>183</td> <td>194<br/>204</td> <td>203</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br>80                                                                                                                                                                                                                                  | 0.017                                | 23.4                           | 31.9               | 37.9              | 50.2          |              | 65.2<br>68.6           | 94.3            | 116          | 140          | 166          | 183          | 194<br>204   | 203          |     |
| Nome         Nome         Nome         No         No        No        No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                       | 0.012                                | 25.6                           | 34.9               | 41.5              | 55            |              | 71.3                   | 103             | 127          | 153          | 182          | 200          | 213          | 223          |     |
| m. m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rainfall dept                                                                                                                                                                                                                             | ths (mm) :                           | : RCP4.5 for                   | the period         | 2031-2050         | 16            | 26           | 02.0<br>Ch             | 120             | 246          | 1/0          | 212          | 232          | 247          | 255          |     |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.58                                                                                                                                                                                                                                      | 0.633                                | 10m<br>9.74                    | 20m<br>13.3        | 30m<br>15.8       | 20.9          | Zn           | 27                     | 38.9            | 47.7         | 48n<br>57.7  | 68.3         | 96n<br>74.7  | 79.4         | 83.2         |     |
| n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n </td <td>2</td> <td>0.5</td> <td>10.7</td> <td>14.6</td> <td>17.3</td> <td>22.9<br/>30.1</td> <td></td> <td>39</td> <td>42.8<br/>56.3</td> <td>52.5<br/>69.1</td> <td>63.3<br/>83.3</td> <td>75.1<br/>98.7</td> <td>108</td> <td>87.4<br/>115</td> <td>91.4<br/>120</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                         | 0.5                                  | 10.7                           | 14.6               | 17.3              | 22.9<br>30.1  |              | 39                     | 42.8<br>56.3    | 52.5<br>69.1 | 63.3<br>83.3 | 75.1<br>98.7 | 108          | 87.4<br>115  | 91.4<br>120  |     |
| n     0     0.0.3     0.0.3     0.0.3     0.0.4     0.0.7     0.0     0.0.7     0.0     0.0.7     0.0     0.0.7     0.0     0.0.7     0.0     0.0.7     0.0     0.0.7     0.0     0.0.7     0.0     0.0.7     0.0     0.0.7     0.0     0.0.7     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 20                                                                                                                                                                                                                                     | 0.1                                  | 16.6                           | 22.6               | 26.9              | 35.6<br>41.4  |              | 46.1<br>53.6           | 66.5<br>77.3    | 95           | 98.5<br>114  | 117          | 128<br>149   | 136<br>158   | 142<br>165   |     |
| b         0         0         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30<br>40                                                                                                                                                                                                                                  | 0.033                                | 20.9<br>22.1                   | 28.5<br>30.1       | 33.9<br>35.8      | 44.9<br>47.4  |              | 58.2<br>61.5           | 84<br>88.8      | 103<br>109   | 124<br>131   | 147<br>156   | 162<br>171   | 172<br>182   | 180<br>190   |     |
| Image         Image <t< td=""><td>50<br/>60</td><td>0.02<br/>0.017</td><td>23<br/>23.8</td><td>31.4<br/>32.5</td><td>37.4<br/>38.6</td><td>49.5<br/>51.2</td><td></td><td>64.2<br/>66.3</td><td>92.6<br/>95.8</td><td>114<br/>118</td><td>137<br/>142</td><td>163<br/>168</td><td>178<br/>184</td><td>189<br/>196</td><td>198<br/>205</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50<br>60                                                                                                                                                                                                                                  | 0.02<br>0.017                        | 23<br>23.8                     | 31.4<br>32.5       | 37.4<br>38.6      | 49.5<br>51.2  |              | 64.2<br>66.3           | 92.6<br>95.8    | 114<br>118   | 137<br>142   | 163<br>168   | 178<br>184   | 189<br>196   | 198<br>205   |     |
| 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </td <td>80<br/>100</td> <td>0.012<br/>0.01</td> <td>25.1<br/>26.1</td> <td>34.2<br/>35.6</td> <td>40.7<br/>42.3</td> <td>53.9<br/>56</td> <td></td> <td>69.9<br/>72.6</td> <td>101<br/>105</td> <td>124<br/>129</td> <td>149<br/>155</td> <td>177<br/>184</td> <td>194<br/>202</td> <td>206<br/>215</td> <td>216<br/>225</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80<br>100                                                                                                                                                                                                                                 | 0.012<br>0.01                        | 25.1<br>26.1                   | 34.2<br>35.6       | 40.7<br>42.3      | 53.9<br>56    |              | 69.9<br>72.6           | 101<br>105      | 124<br>129   | 149<br>155   | 177<br>184   | 194<br>202   | 206<br>215   | 216<br>225   |     |
| AIM     AIP     Lip     Con     Con </td <td>250<br/>Rainfall dept</td> <td>0.004<br/>: (mm)</td> <td>30.3<br/>RCP4.5 for :</td> <td>41.3<br/>the period</td> <td>49.1<br/>2081-2100</td> <td>65.1</td> <td></td> <td>84.4</td> <td>122</td> <td>150</td> <td>180</td> <td>214</td> <td>235</td> <td>250</td> <td>261</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250<br>Rainfall dept                                                                                                                                                                                                                      | 0.004<br>: (mm)                      | 30.3<br>RCP4.5 for :           | 41.3<br>the period | 49.1<br>2081-2100 | 65.1          |              | 84.4                   | 122             | 150          | 180          | 214          | 235          | 250          | 261          |     |
| 1     0     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </td <td>ARI /<br/>1.58</td> <td>AEP<br/>0.633</td> <td>10m<br/>10.2</td> <td>20m<br/>14</td> <td>30m<br/>16.6</td> <td>1h<br/>21.9</td> <td>2h</td> <td>6h<br/>28.3</td> <td>12h<br/>40.5</td> <td>24h<br/>49.4</td> <td>48h<br/>59.5</td> <td>72h<br/>70.1</td> <td>96h<br/>76.5</td> <td>1<br/>81.1</td> <td>20h<br/>84.9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ARI /<br>1.58                                                                                                                                                                                                                             | AEP<br>0.633                         | 10m<br>10.2                    | 20m<br>14          | 30m<br>16.6       | 1h<br>21.9    | 2h           | 6h<br>28.3             | 12h<br>40.5     | 24h<br>49.4  | 48h<br>59.5  | 72h<br>70.1  | 96h<br>76.5  | 1<br>81.1    | 20h<br>84.9  |     |
| n     0.     0.1     0.75     2.9     3.9     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6     7.6 <td>2<br/>5</td> <td>0.5<br/>0.2</td> <td>11.3<br/>14.8</td> <td>15.3<br/>20.2</td> <td>18.2<br/>24</td> <td>24.1<br/>31.8</td> <td></td> <td>31.2<br/>41.1</td> <td>44.6<br/>58.8</td> <td>54.5<br/>71.9</td> <td>65.4<br/>86.2</td> <td>77.1<br/>102</td> <td>84.3<br/>111</td> <td>89.4<br/>118</td> <td>93.4<br/>123</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>5                                                                                                                                                                                                                                    | 0.5<br>0.2                           | 11.3<br>14.8                   | 15.3<br>20.2       | 18.2<br>24        | 24.1<br>31.8  |              | 31.2<br>41.1           | 44.6<br>58.8    | 54.5<br>71.9 | 65.4<br>86.2 | 77.1<br>102  | 84.3<br>111  | 89.4<br>118  | 93.4<br>123  |     |
| n     0.03     2.1.     0.1     0.5     0.4     0.5     0.4     0.5     0.6     0.7     0.5     0.4     0.5     0.6     0.7     0.7     0.5     0.4     0.5     0.7     0.7     0.5     0.7     0.7     0.5     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7     0.7 </td <td>10<br/>20</td> <td>0.1<br/>0.05</td> <td>17.5<br/>20.4</td> <td>23.9<br/>27.8</td> <td>28.4<br/>33</td> <td>37.6<br/>43.7</td> <td></td> <td>48.6<br/>56.5</td> <td>69.6<br/>81.1</td> <td>85.1<br/>99</td> <td>102<br/>119</td> <td>120<br/>140</td> <td>132<br/>153</td> <td>140<br/>163</td> <td>146<br/>170</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>20                                                                                                                                                                                                                                  | 0.1<br>0.05                          | 17.5<br>20.4                   | 23.9<br>27.8       | 28.4<br>33        | 37.6<br>43.7  |              | 48.6<br>56.5           | 69.6<br>81.1    | 85.1<br>99   | 102<br>119   | 120<br>140   | 132<br>153   | 140<br>163   | 146<br>170   |     |
| b     0.02     2.44     3.32     3.95     3.44     6.95     5.44     6.70     7.2     1.96     1.67     1.62     1.67     1.62     1.67     1.62     1.67     1.62     1.67     1.62     1.67     1.62     1.67     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62     1.62 <t< td=""><td>30<br/>40</td><td>0.033<br/>0.025</td><td>22.1<br/>23.4</td><td>30.1<br/>31.9</td><td>35.8<br/>37.9</td><td>47.5<br/>50.2</td><td></td><td>61.4<br/>64.9</td><td>88<br/>93.2</td><td>108<br/>114</td><td>129<br/>136</td><td>152<br/>161</td><td>166<br/>176</td><td>177<br/>187</td><td>184<br/>195</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30<br>40                                                                                                                                                                                                                                  | 0.033<br>0.025                       | 22.1<br>23.4                   | 30.1<br>31.9       | 35.8<br>37.9      | 47.5<br>50.2  |              | 61.4<br>64.9           | 88<br>93.2      | 108<br>114   | 129<br>136   | 152<br>161   | 166<br>176   | 177<br>187   | 184<br>195   |     |
| n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n     n </td <td>50<br/>60</td> <td>0.02<br/>0.017</td> <td>24.4<br/>25.2</td> <td>33.2<br/>34.4</td> <td>39.5<br/>40.9</td> <td>52.4<br/>54.1</td> <td></td> <td>67.7<br/>70</td> <td>97.2<br/>101</td> <td>119<br/>123</td> <td>142<br/>147</td> <td>168<br/>174</td> <td>184<br/>190</td> <td>195<br/>202</td> <td>204<br/>210</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50<br>60                                                                                                                                                                                                                                  | 0.02<br>0.017                        | 24.4<br>25.2                   | 33.2<br>34.4       | 39.5<br>40.9      | 52.4<br>54.1  |              | 67.7<br>70             | 97.2<br>101     | 119<br>123   | 142<br>147   | 168<br>174   | 184<br>190   | 195<br>202   | 204<br>210   |     |
| notal     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j     j<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80<br>100                                                                                                                                                                                                                                 | 0.012                                | 26.6<br>27.6                   | 36.2<br>37.6       | 43.1<br>44.8      | 57<br>59.3    |              | 73.8<br>76.7           | 106<br>110      | 129<br>135   | 155<br>161   | 183<br>190   | 200<br>208   | 212<br>221   | 222<br>231   |     |
| All     Ale     Di       1     5     0.3     0.6     1.45     1.72     0.72     0.72     0.75     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71     0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250<br>Rainfall dept                                                                                                                                                                                                                      | 0.004<br>ths (mm) :                  | 32<br>BCP6.0 for               | 43.7<br>the period | 52<br>2031-2050   | 68.8          |              | 89.1                   | 128             | 156          | 187          | 221          | 242          | 257          | 268          |     |
| 1         0         0         1         1         2         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ARI /                                                                                                                                                                                                                                     | AEP<br>0.633                         | 10m<br>9.67                    | 20m                | 30m               | 1h<br>20.7    | 2h           | 6h<br>26.8             | 12h<br>38 7     | 24h<br>47 5  | 48h<br>57 4  | 72h          | 96h<br>74 5  | 1<br>79 2    | 20h<br>82 9  |     |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 5                                                                                                                                                                                                                                       | 0.5<br>0.2                           | 10.6                           | 14.5               | 17.2              | 22.8          |              | 29.5<br>38.8           | 42.5            | 52.3<br>68.7 | 63.1<br>82.9 | 74.8<br>98.3 | 82<br>108    | 87.1<br>115  | 91.2<br>120  |     |
| 10         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                        | 0.1                                  | 16.5                           | 22.5               | 26.7              | 35.3          |              | 45.8                   | 66.1<br>76.9    | 81.3<br>94 4 | 98           | 116          | 128          | 135          | 142          |     |
| box     bxx     bxx <td>30</td> <td>0.033</td> <td>20.7</td> <td>28.3</td> <td>33.6</td> <td>41.1</td> <td></td> <td>57.8</td> <td>83.4</td> <td>103</td> <td>124</td> <td>147</td> <td>161</td> <td>171</td> <td>179</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                        | 0.033                                | 20.7                           | 28.3               | 33.6              | 41.1          |              | 57.8                   | 83.4            | 103          | 124          | 147          | 161          | 171          | 179          |     |
| Notat     2.5.7     3.6.4     30.8     90.8     95.2     11/     11/     147     167     184     105     216       100     0.01     2.5.9     3.3     4.2     55.6     67.4     104     128     15.9     16.3     21.4     124     23.4     23.4     23.4     23.4       250     0.01     25.9     15.8     0.63     10.7     16.6     17.3     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4     23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40<br>50                                                                                                                                                                                                                                  | 0.025                                | 21.9<br>22.9                   | 29.9<br>31.2       | 35.6<br>37.1      | 47.1          |              | 63.7                   | 92<br>95 2      | 108          | 131          | 162          | 178          | 181          | 189          |     |
| 1000         0012         250         012         101         112         105         183         201         214         240           Rainfall erbts         Umm         StR5 to the period 208:-100         Use         Use     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60<br>80                                                                                                                                                                                                                                  | 0.017                                | 23.7<br>24.9                   | 32.3               | 38.4<br>40.4      | 50.8<br>53.5  |              | 69.4                   | 95.2<br>100     | 123          | 141<br>149   | 176          | 184<br>193   | 206          | 204          |     |
| Name         Name <th cols<="" td=""><td>250</td><td>0.01<br/>0.004</td><td>25.9<br/>30</td><td>35.3<br/>41</td><td>42 48.7</td><td>55.6<br/>64.6</td><td></td><td>83.7</td><td>104</td><td>149</td><td>180</td><td>213</td><td>234</td><td>249</td><td>260</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <td>250</td> <td>0.01<br/>0.004</td> <td>25.9<br/>30</td> <td>35.3<br/>41</td> <td>42 48.7</td> <td>55.6<br/>64.6</td> <td></td> <td>83.7</td> <td>104</td> <td>149</td> <td>180</td> <td>213</td> <td>234</td> <td>249</td> <td>260</td> | 250                                  | 0.01<br>0.004                  | 25.9<br>30         | 35.3<br>41        | 42 48.7       | 55.6<br>64.6 |                        | 83.7            | 104          | 149          | 180          | 213          | 234          | 249          | 260 |
| 1         0         0         0         0         0         0         0         1         7         7         78         82.6         68.6           2         0.5         1.8         16         10         1.1         7.4         88.7         1.04         1.14         1.2         1.25           5         0.2         1.55         2.1.1         2.1.1         3.3.1         4.2.0         6.1.1         7.4         88.7         1.04         1.15         1.43         1.44         1.15         1.46         1.44           20         0.05         2.1.3         2.9.1         3.4.6         4.5.8         5.9.2         84.4         1.03         1.16         1.14         1.15         1.46         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16 <td>ARI /</td> <td>AEP</td> <td>10m</td> <td>20m</td> <td>30m</td> <td>1h</td> <td>2h</td> <td>6h</td> <td>12h</td> <td>24h</td> <td>48h</td> <td>72h</td> <td>96h</td> <td>1</td> <td>20h</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ARI /                                                                                                                                                                                                                                     | AEP                                  | 10m                            | 20m                | 30m               | 1h            | 2h           | 6h                     | 12h             | 24h          | 48h          | 72h          | 96h          | 1            | 20h          |     |
| s       u.z.       u.z.       u.z.       v.z.       v.z. <t< td=""><td>1.58</td><td>0.633</td><td>10.7</td><td>14.6<br/>16</td><td>17.3<br/>19.1</td><td>22.9<br/>25.2</td><td></td><td>29.5<br/>32.6</td><td>41.9<br/>46.3</td><td>50.9<br/>56.3</td><td>67.2</td><td>79<br/>101</td><td>78<br/>86.1</td><td>82.6<br/>91.2</td><td>86.4<br/>95.2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.58                                                                                                                                                                                                                                      | 0.633                                | 10.7                           | 14.6<br>16         | 17.3<br>19.1      | 22.9<br>25.2  |              | 29.5<br>32.6           | 41.9<br>46.3    | 50.9<br>56.3 | 67.2         | 79<br>101    | 78<br>86.1   | 82.6<br>91.2 | 86.4<br>95.2 |     |
| uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                         | 0.2                                  | 15.5<br>18.3                   | 21.1<br>25         | 25.1<br>29.7      | 33.3<br>39.4  |              | 42.9<br>50.8           | 01.1<br>72.4    | 74.4<br>88.1 | 105          | 104          | 114          | 143          | 126<br>149   |     |
| w       u.u.z       v4.s       33.4       39.7       52.6       67.9       97.1       118       141       165       181       191       200       206         60       0.017       26.4       36       42.9       56.8       73.3       100       132       152       17.9       185       207       218       227       28.9       28.9       73.9       100       16.0       18.0       20.6       21.4       27.7       28.9       21.6       27.7       28.9       10.0       10.0       10.0       21.4       27.7       28.0       21.8       27.7       28.0       10.0       10.0       21.4       27.7       28.0       21.8       27.7       28.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0       10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>30                                                                                                                                                                                                                                  | 0.05<br>0.033                        | 21.3<br>23.2                   | 29.1<br>31.6       | 34.6<br>37.6      | 45.8<br>49.8  |              | 59.2<br>64.3           | 84.4<br>91.7    | 103<br>111   | 122<br>133   | 144<br>156   | 157<br>171   | 166<br>181   | 174<br>189   |     |
| 60       0.012       26.4       36       42.9       56.8       7.3       105       127       152       179       195       207       215         100       0.011       27.9       38       45.2       56.8       77.3       110       140       167       166       214       227       236       227         200       0.001       3.6       45.8       54.5       72.2       93.3       132       162       167       167       208       248       263       275       28       28       265       275       28       265       158       663       9.85       13.4       16       21.1       27.3       39.3       48.1       58.1       68.7       75.1       79.8       83.6         158       0.63       9.85       13.4       16       21.1       27.3       39.3       48.1       58.1       68.7       59.5       63.8       75.5       82.7       75.1       79.8       83.6         10       0.1       16.8       12.9       72.2       36.1       67.2       82.5       93.1       18       12.9       12.6       16.1       13.1       12.9       16.1       12.9       12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40<br>50                                                                                                                                                                                                                                  | 0.025<br>0.02                        | 24.5<br>25.6                   | 33.4<br>34.9       | 39.7<br>41.5      | 52.6<br>54.9  |              | 67.9<br>70.9           | 97.1<br>101     | 118<br>123   | 141<br>147   | 165<br>173   | 181<br>188   | 191<br>200   | 200<br>208   |     |
| 1000.012.93.9.54.76.2.28.0.41.151.001.671.962.142.272.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.362.363.363.363.553.623.753.623.753.623.753.623.753.623.753.623.753.623.753.623.753.623.753.633.613.753.633.613.753.633.613.753.633.613.753.633.613.753.633.613.753.633.613.753.633.613.753.633.613.753.633.613.753.633.613.753.723.733.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.713.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br>80                                                                                                                                                                                                                                  | 0.017<br>0.012                       | 26.4<br>27.9                   | 36<br>38           | 42.9<br>45.2      | 56.8<br>59.8  |              | 73.3<br>77.3           | 105<br>110      | 127<br>134   | 152<br>160   | 179<br>188   | 195<br>206   | 207<br>218   | 215<br>227   |     |
| Network           A         Network         Network         Network         Network         Network         Network           Network         Network         Network         Network         Network         Network           Network         Network         Network         Network           Network         Network         Network         Network         Network           Network         Network         Network         Network         Network           Network         Network         Network         Network         Network           Network         Network         Network         Network         Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100<br>250                                                                                                                                                                                                                                | 0.01<br>0.004                        | 29<br>33.6                     | 39.5<br>45.8       | 47<br>54.5        | 62.2<br>72.2  |              | 80.4<br>93.3           | 115<br>133      | 140<br>162   | 167<br>193   | 196<br>228   | 214<br>248   | 227<br>263   | 236<br>275   |     |
| 1.580.6339.8513.41621.127.339.348.158.168.775.179.883.620.510.814.817.523.230.143.25365.867.582.787.991.950.214.214.827.523.230.143.25365.863.889.999.4109116121100.116.822.927.236.146.767.282.599.3115137150159166300.0321.228.934.345.558.984.9104133157172183161400.02522.431.937.950.26593.7115138164179191196500.0223.431.937.950.26593.7115138164179206600.01724.132.939.251.967.296.9113137150137206600.01225.434.741.954.876.610.61301571862302612667000.0126.436.149.955.873.6151179166266266261261261261261261261261261261261261261261261261261261 <td>Rainfall dept<br/>ARI A</td> <td>ths (mm) :<br/>AEP</td> <td>: RCP8.5 for<br/>10m</td> <td>the period<br/>20m</td> <td>2031-2050<br/>30m</td> <td>1h</td> <td>2h</td> <td>6h</td> <td>12h</td> <td>24h</td> <td>48h</td> <td>72h</td> <td>96h</td> <td>1</td> <td>20h</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rainfall dept<br>ARI A                                                                                                                                                                                                                    | ths (mm) :<br>AEP                    | : RCP8.5 for<br>10m            | the period<br>20m  | 2031-2050<br>30m  | 1h            | 2h           | 6h                     | 12h             | 24h          | 48h          | 72h          | 96h          | 1            | 20h          |     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.58<br>2                                                                                                                                                                                                                                 | 0.633<br>0.5                         | 9.85<br>10.8                   | 13.4<br>14.8       | 16<br>17.5        | 21.1<br>23.2  |              | 27.3<br>30.1           | 39.3<br>43.2    | 48.1<br>53   | 58.1<br>63.8 | 68.7<br>75.5 | 75.1<br>82.7 | 79.8<br>87.9 | 83.6<br>91.9 |     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>10                                                                                                                                                                                                                                   | 0.2<br>0.1                           | 14.2<br>16.8                   | 19.4<br>22.9       | 23<br>27.2        | 30.5<br>36.1  |              | 39.5<br>46.7           | 56.9<br>67.2    | 69.8<br>82.5 | 83.9<br>99.3 | 99.4<br>118  | 109<br>129   | 116<br>137   | 121<br>143   |     |
| 40       0.025       22.4       30.5       36.3       48.1       62.3       89.8       110       133       157       172       183       191         50       0.02       23.4       31.9       37.9       50.2       65       93.7       115       138       164       179       191       199         60       0.017       24.1       32.9       39.2       51.9       67.2       96.9       119       143       169       186       197       206         80       0.012       25.4       34.7       41.3       54.6       70.8       102       125       151       179       196       208       217         100       0.01       26.4       36.1       42.9       56.8       73.6       106       130       157       186       203       216       226         250       0.004       30.7       41.9       49.8       65.9       85.5       123       151       182       216       236       251       232         260       0.004       30.7       16       21       24       48.6       77.6       36.6       36.1       31.9       25.3       99.2       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20<br>30                                                                                                                                                                                                                                  | 0.05<br>0.033                        | 19.5<br>21.2                   | 26.6<br>28.9       | 31.6<br>34.3      | 41.9<br>45.5  |              | 54.3<br>58.9           | 78.2<br>84.9    | 95.9<br>104  | 115<br>125   | 137<br>149   | 150<br>163   | 159<br>173   | 166<br>181   |     |
| 60       0.017       24.1       32.9       39.2       51.9       67.2       96.9       119       143       169       186       197       206         80       0.012       25.4       34.7       41.3       54.6       70.8       102       125       151       179       196       208       217         100       0.01       26.4       36.1       42.9       56.8       73.6       106       130       157       186       203       216       226         250       0.004       30.7       41.9       49.8       65.9       85.5       123       151       182       216       236       251       263         ARI       AEP       10m       20m       30m       1h       2h       6h       12h       24h       48h       72h       96h       120H         ARI       AEP       10m       20m       30m       1h       2h       6h       12h       24h       48h       72h       96h       120H         1.58       0.633       11.7       15.9       18.9       25.1       32.1       45.2       54.4       64.7       75.3       81.5       86.1       89.8       99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                                                                                                                                                                                                                                        | 0.025                                | 22.4                           | 30.5               | 36.3              | 48.1          |              | 62.3<br>65             | 89.8<br>93.7    | 110<br>115   | 133<br>138   | 157<br>164   | 172<br>179   | 183<br>191   | 191<br>199   |     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60<br>80                                                                                                                                                                                                                                  | 0.017                                | 23.4<br>24.1<br>25.4           | 32.9               | 39.2<br>41 2      | 51.9<br>54 6  |              | 67.2<br>70.8           | 96.9<br>102     | 119<br>125   | 143<br>151   | 169<br>179   | 186<br>196   | 197          | 206          |     |
| Los         Los <thlos< th=""> <thlos< th=""> <thlos< th=""></thlos<></thlos<></thlos<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                       | 0.012                                | 26.4                           | 36.1               | 42.9              | 56.8          |              | 73.6                   | 106             | 130          | 157<br>182   | 186          | 203          | 216          | 226          |     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250<br>Rainfall dept                                                                                                                                                                                                                      | 0.004<br>ths (mm) :                  | 30.7<br>RCP8.5 for<br>10~      | 41.9<br>the period | 49.8<br>2081-2100 | 05.9          | 31-          | 03.3                   | 123             | 101          | 102          | 210          | 230          | 231          | 203<br>20h   |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.58                                                                                                                                                                                                                                      | 0.633                                | 11.7                           | 15.9               | 18.9              | 25.1          | 211          | ьh<br>32.1             | 12h<br>45.2     | 24h<br>54.4  | 48h<br>64.7  | 75.3         | 96h<br>81.5  | 1<br>86.1    | 89.8         |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                         | 0.5                                  | 12.9<br>17.1                   | 17.6               | 20.9<br>27.6      | 27.7<br>36.6  |              | 55.6<br>47.1           | 50<br>66.3      | 80           | 71.3<br>94.6 | o3.1<br>110  | 90.2<br>120  | 95.3<br>127  | 99.2<br>132  |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>20                                                                                                                                                                                                                                  | 0.1                                  | 20.2<br>23.6                   | 27.6<br>32.1       | 32.8<br>38.2      | 43.4<br>50.6  |              | 55.9<br>65.1           | 78.7<br>91.9    | 95<br>111    | 112          | 131<br>153   | 143<br>166   | 150<br>175   | 157<br>182   |     |
| SU         UU2         28.3         38.5         45.8         60.7         78.2         110         133         157         184         199         211         219           60         0.017         29.2         39.8         47.4         62.7         80.8         114         138         163         190         207         218         227           80         0.012         30.8         42         50         66.2         85.2         120         145         171         200         218         230         239           100         0.01         32         43.7         51.9         68.8         86.6         125         151         178         208         226         239         249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30<br>40                                                                                                                                                                                                                                  | 0.033<br>0.025                       | 25.6<br>27                     | 34.9<br>36.9       | 41.5<br>43.9      | 55<br>58.1    |              | 70.8                   | 99.9<br>106     | 120          | 142<br>151   | 166<br>176   | 180<br>191   | 191<br>202   | 198<br>210   |     |
| 80         0.012         30.8         42         50         66.2         85.2         120         145         171         200         218         230         239           100         0.01         32         43.7         51.9         68.8         88.6         125         151         178         208         226         239         249           750         0.001         32         67.2         67.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2 <td>50<br/>60</td> <td>0.02<br/>0.017</td> <td>28.3<br/>29.2</td> <td>38.5<br/>39.8</td> <td>45.8<br/>47.4</td> <td>60.7<br/>62.7</td> <td></td> <td>/8.2<br/>80.8</td> <td>110<br/>114</td> <td>133<br/>138</td> <td>157<br/>163</td> <td>184<br/>190</td> <td>199<br/>207</td> <td>211<br/>218</td> <td>219<br/>227</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50<br>60                                                                                                                                                                                                                                  | 0.02<br>0.017                        | 28.3<br>29.2                   | 38.5<br>39.8       | 45.8<br>47.4      | 60.7<br>62.7  |              | /8.2<br>80.8           | 110<br>114      | 133<br>138   | 157<br>163   | 184<br>190   | 199<br>207   | 211<br>218   | 219<br>227   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80<br>100                                                                                                                                                                                                                                 | 0.012                                | 30.8<br>32                     | 42                 | 50<br>51.9        | 66.2<br>68.8  |              | 85.2<br>88.6           | 120<br>125      | 145<br>151   | 171<br>178   | 200          | 218<br>226   | 230<br>239   | 239<br>249   |     |

**APPENDIX F – MODELLING RESULTS** 

6.39

|                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        |                |                 |         | D1                                                                      |
|-------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----------------|---------|-------------------------------------------------------------------------|
| Legend                                    |        | R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                |                 |         |                                                                         |
| Model Results Locations                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | E C            | -111            |         |                                                                         |
| Peak Water Level Difference <a></a> <0.05 | (m)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                |                 |         |                                                                         |
| 0.05-0.1                                  |        | and the second se | 2        |                |                 | 748     |                                                                         |
| 0.1-0.15                                  |        | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | D4             |                 |         |                                                                         |
| 0.15-0.2                                  |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                |                 | 205     | D5                                                                      |
| 0.2-0.25                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                | STR BALL        | 10      |                                                                         |
| 0.25-0.6                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | ALC A          |                 |         |                                                                         |
| 0.6-1                                     |        | e public                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                |                 |         |                                                                         |
| 1-2                                       |        | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 152      | XX             |                 |         |                                                                         |
| 2-3                                       |        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E.       |                |                 |         |                                                                         |
| 3-6                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Box$   |                |                 |         |                                                                         |
| Existing Flood Extent                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | - and a second |                 |         |                                                                         |
| Post Development Flood                    | l Exte | nt 🔪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                | m att           |         |                                                                         |
| Proposed Site Layout                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                |                 |         |                                                                         |
| Sleepyhead Site Extent                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                |                 |         |                                                                         |
| WRC Drains                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                |                 |         |                                                                         |
| Lakes                                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                |                 |         |                                                                         |
| Stop Bank                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                |                 |         | Lake Ohinewai                                                           |
| Overland Flow Paths                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | <              |                 |         |                                                                         |
| REVISION DETAILS                          | INT    | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SURVEYED | n/a            | 231 TAHUNA ROAD | the     |                                                                         |
| I Final Issue                             | AD     | 18/11/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DESIGNED | AD<br>SH       | UMSDEN ROAT     | comfort | Modelled Flood Level Difference (m) - Post Development vs. Pre Developm |
|                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHECKED  | PW             | WAIKATO         | group   | 100 year ARI with Climate Change                                        |
|                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | APPROVED | DW             | WOODS.CO.NZ     |         |                                                                         |

200

ID 6

ID7



|                                     |        | -                                     |     |                                             |                   | ID1                                                                     |
|-------------------------------------|--------|---------------------------------------|-----|---------------------------------------------|-------------------|-------------------------------------------------------------------------|
| Legend                              |        |                                       |     |                                             |                   |                                                                         |
| Model Results Locations             | ;      | A A A A A A A A A A A A A A A A A A A |     |                                             |                   |                                                                         |
| Peak Water Level Difference <a></a> | (m)    |                                       | Ē   |                                             |                   |                                                                         |
| 0.05-0.1                            |        |                                       |     |                                             | 1                 |                                                                         |
| 0.1-0.15                            |        | I                                     | D4  |                                             |                   |                                                                         |
| 0.15-0.2                            |        |                                       |     |                                             | 5 Real Providence | ID 5                                                                    |
| 0.2-0.25                            |        |                                       |     | TATA AND AND AND AND AND AND AND AND AND AN |                   |                                                                         |
| 0.25-0.6                            |        |                                       |     |                                             |                   |                                                                         |
| 0.6-1                               |        |                                       |     |                                             |                   |                                                                         |
| 1-2                                 |        | 15                                    |     |                                             |                   |                                                                         |
| 2-3                                 |        | TRE                                   |     |                                             |                   | The fordunation trade                                                   |
| 3-6                                 |        |                                       |     |                                             |                   |                                                                         |
| Existing Flood Extent               |        |                                       |     |                                             |                   |                                                                         |
| Post Development Flood              | l Exte | nt                                    |     |                                             |                   |                                                                         |
| Proposed Site Layout                |        | 1100                                  |     | C C C C C C C C C C C C C C C C C C C       |                   |                                                                         |
| Sleepyhead Site Extent              |        |                                       |     |                                             |                   |                                                                         |
| WRC Drains                          |        |                                       |     |                                             |                   |                                                                         |
| Lakes                               |        |                                       |     |                                             |                   |                                                                         |
| Stop Bank                           |        |                                       | 1-1 |                                             |                   | Lake Ohinewai                                                           |
| Overland Flow Paths                 |        |                                       | < · |                                             |                   |                                                                         |
| REVISION DETAILS                    | INT    | DATE SURVEYED                         | n/a |                                             | the               | SI FEPYHEAD ESTATE OHINEWAL - 3 WATERS                                  |
|                                     |        | DRAWN                                 | SH  | OHINEWAI                                    | comfort           | Modelled Flood Level Difference (m) - Post Development vs. Pre Developm |
|                                     |        |                                       | PW  |                                             | group             | 10 year ARI with Climate Change                                         |
|                                     |        | APPROVED                              |     | WOODS.CO.INZ                                |                   |                                                                         |



### ID 8 ID6 ID 7 ID 1 Legend • Model Results Locations Peak Water Level Difference (m) < 0.05 0.05-0.1 0.1-0.15 ID4 0.15-0.2 ID5 0.2-0.25 0.25-0.6 0.6-1 8 000000000 1-2 2-3 3-6 Existing Flood Extent Post Development Flood Extent Proposed Site Layout Sleepyhead Site Extent WRC Drains Lakes --- Stop Bank Lake Ohinewa ---- Overland Flow Paths **REVISION DETAILS** INT DATE SURVEYED n/a 231 TAHUNA ROAD the comfort group. SLEEPYHEAD ESTATE, OHINEWAI - 3 WATERS AD & 88 LUMSDEN ROAT 1 Final issue 18/11/19 DESIGNED AD SH OHINEWAI DRAWN Modelled Flood Level Difference (m) - Post Development vs. Pre Development WAIKATO CHECKED PW 2 year ARI with Climate Change APPROVED DW WOODS.CO.NZ



ID 1 Legend • Model Results Locations Peak Water Level Difference (m) < 0.05 0.05-0.1 0.1-0.15 ID4 0.15-0.2 ID 5 0.2-0.25 0.25-0.6 600000000 0.6-1 <u>/8 000000000</u> E 1-2 2-3 3-6 Existing Flood Extent Post Development Flood Extent ] Proposed Site Layout Sleepyhead Site Extent WRC Drains Lakes --- Stop Bank Lake Ohinewai ---- Overland Flow Paths **REVISION DETAILS** INT DATE SURVEYED n/a 231 TAHUNA ROAD the comfort group. SLEEPYHEAD ESTATE, OHINEWAI - 3 WATERS AD 1 Final issue 18/11/19 DESIGNED AD & 88 LUMSDEN ROAT SH OHINEWAI DRAWN Modelled Flood Level Difference (m) - Post Development vs. Pre Development WAIKATO CHECKED PW 2 year( Lower Tail Water Level Scenario) ARI with Climate Change APPROVED DW WOODS.CO.NZ

ID 6

**ID**7



|                             |        |                   |           |                               |           | ID1                                                                     |
|-----------------------------|--------|-------------------|-----------|-------------------------------|-----------|-------------------------------------------------------------------------|
| Legend                      |        |                   |           |                               |           |                                                                         |
| Model Results Locations     | 5      | AND HE            |           |                               |           |                                                                         |
| Peak Water Level Difference | (m)    |                   | X         | 1670                          |           |                                                                         |
| <0.05                       |        |                   | S-L       |                               |           |                                                                         |
| 0.05-0.1                    |        |                   |           |                               |           |                                                                         |
| 0.1-0.15                    |        | Ξ                 | D4        |                               |           |                                                                         |
| 0.15-0.2                    |        | 3                 |           |                               | ALC AND   | ID 5                                                                    |
| 0.2-0.25                    |        |                   |           |                               | TT        |                                                                         |
| 0.25-0.6                    |        |                   | DE        |                               |           |                                                                         |
| 0.6-1                       |        |                   |           |                               | ATT TO OT |                                                                         |
| 1-2                         |        | Same              | AN YOU    |                               |           |                                                                         |
| 2-3                         |        | A                 | and the   |                               |           |                                                                         |
| 3-6                         |        |                   |           |                               |           |                                                                         |
| 🔀 Existing Flood Extent     |        |                   | C. Marken | Alt                           |           |                                                                         |
| Post Development Floor      | d Exte | nt                |           |                               |           |                                                                         |
| Proposed Site Layout        |        |                   |           |                               |           |                                                                         |
| Sleepyhead Site Extent      |        |                   |           |                               |           |                                                                         |
| WRC Drains                  |        |                   |           |                               |           |                                                                         |
| Lakes                       |        |                   |           |                               |           |                                                                         |
| Stop Bank                   |        |                   |           |                               | 5         | Lake Ohinewai                                                           |
| Overland Flow Paths         |        |                   | {         |                               |           |                                                                         |
|                             | INT    | DATE SURVEYED     | n/a       | 231 TAHUNA ROAD               | the       | SLEEPYHEAD ESTATE, OHINEWAI - 3 WATERS                                  |
| I Final issue               | AD     | 18/11/19 DESIGNED | AD<br>SH  | & 88 LUMSDEN ROAT<br>OHINEWAI | comfort   | Modelled Flood Level Difference (m) –                                   |
| +                           |        | CHECKED           | PW        | WAIKATO                       | group     | Scenario 3 (Maximum Probable Development) vs. Scenario 1 (Pre Developme |
|                             |        | APPROVED          | DW        | WOODS.CO.NZ                   |           | 100 year MPD ARI with Climate Change                                    |
|                             |        |                   |           |                               |           |                                                                         |

200

ID 6

ID 7



|                             | 3      |                         |          |            |                               |                | DI                                                                       |
|-----------------------------|--------|-------------------------|----------|------------|-------------------------------|----------------|--------------------------------------------------------------------------|
| Legend                      |        |                         |          |            |                               |                |                                                                          |
| Model Results Locations     |        | Printless of the second | 441 245× | E L        |                               |                |                                                                          |
| Peak Water Level Difference | (m)    |                         |          |            | 16.30                         |                |                                                                          |
| <0.05                       |        |                         | 1        |            |                               |                |                                                                          |
| 0.05-0.1                    |        | and the second second   | E.A.     |            |                               | 7              |                                                                          |
| 0.1-0.15                    |        | 246                     | 1        | D4         |                               |                |                                                                          |
| 0.15-0.2                    |        |                         |          |            |                               | SIR CONTRACTOR | ID 5                                                                     |
| 0.2-0.25                    |        |                         |          | 1-1-4      |                               | J-T            |                                                                          |
| 0.25-0.6                    |        | and the                 |          | Date       |                               |                |                                                                          |
| 0.6-1                       |        | Section 2               |          |            |                               |                |                                                                          |
| 1-2                         |        | Contraction of          | 15       | North West |                               |                |                                                                          |
| 2-3                         |        | A                       | CAR      |            |                               |                |                                                                          |
| 3-6                         |        | XX                      | 5        |            |                               |                |                                                                          |
| 🔀 Existing Flood Extent     |        |                         |          | De Marka   |                               |                |                                                                          |
| Post Development Flood      | l Exte | nt 💢                    |          |            |                               |                |                                                                          |
| Proposed Site Layout        |        |                         | i,       |            |                               |                |                                                                          |
| Sleepyhead Site Extent      |        |                         |          |            |                               |                |                                                                          |
| WRC Drains                  |        |                         |          |            |                               |                |                                                                          |
| Lakes                       |        |                         |          |            |                               |                |                                                                          |
| Stop Bank                   |        |                         |          | X          |                               | 5              | Lake Ohinewai                                                            |
| Overland Flow Paths         |        |                         |          | -{         |                               |                |                                                                          |
| REVISION DETAILS            | INT    | DATE                    | SURVEYED | n/a        | _ 231 TAHUNA ROAD             | the            | SLEEPYHEAD ESTATE, OHINEWAI - 3 WATERS                                   |
| 1 Final issue               | AD     | 18/11/19                | DESIGNED | AD<br>SH   | & 88 LUMSDEN ROAT<br>OHINEWAI | comfort        | Modelled Flood Level Difference (m) –                                    |
|                             |        |                         | CHECKED  | PW         | WAIKATO                       | group.         | Scenario 5 (Pre Development Sensitivity) vs. Scenario 1 (Pre Development |
|                             |        |                         | APPROVED | DW         | WOODS.CO.NZ                   |                | 100 year SENS ARI with Climate Change                                    |

200

ID 6

ID 7

