BEFORE THE HEARING COMMISSIONERS FOR THE WAIKATO DISTRICT COUNCIL

Under the Resource Management Act 1991

In the matter of Variation 3 to the Proposed Waikato District Plan

Submission by SYNLAIT MILK LIMITED

STATEMENT OF EVIDENCE OF JAKE DEADMAN

4 July 2023

Duncan Cotterill Solicitor acting: Jamie Robinson PO Box 5, Christchurch 8140

Phone +64 3 379 2430 Fax +64 3 379 7097 jamie.robinson@duncancotterill.com

INTRODUCTION

- 1 My name is Jake Deadman.
- 2 I am the Site Manager for Synlait Milk Pōkeno Manufacturing Site.
- 3 I have a bachelor's degree in Commerce and Administration from Victoria University in Wellington.
- 4 I have close to 15 years' experience in various dairy manufacturing positions in New Zealand. I have joined Synlait in December 2021.

Scope of Evidence

- 5 The scope of this evidence is to:
 - 5.1 Describe Synlait's operation in general and more specifically in Pōkeno;
 - 5.2 Highlight the reliance of Industry on Council's infrastructure;
 - 5.3 The future provision of infrastructure.

Synlait Milk Limited - Overview

- 6 Synlait Milk Limited (Synlait) is a publicly owned company listed on the NZX and ASX with its head quarter and main dairy manufacturing operation located in Dunsandel, south of Christchurch. Synlait operate a research facility in Palmerston North and dry blending infant formula plant in Auckland.
- 7 Synlait Milk Limited also own and operate a state-of-the-art nutritional powder manufacturing plant in the McDonald Road industrial park in Pōkeno, Stage One of which has been operating since 2019. The site is zoned Heavy Industrial in the proposed District Plan.
- 8 Synlait Pōkeno contributes significantly to the Waikato District's economy. We employ a team of around 150 people with a total of \$13m in wages and an annual spend of \$20m to local vendors and suppliers, which is injected through the local community. On top of this payment of over \$250m across the last three years in milk payments to regional milk suppliers.
- 9 Synlait supports Pōkeno's expansion and development, and the ambition for a thriving community. We understand that the primary purpose of Variation 3 is to address intensification and urban development. Our involvement and interest in the Variation 3 process is limited to the potential effect of reverse sensitivity and the provision of adequate infrastructure, namely for stormwater management and trade waste/wastewater to support our business development plan.

Synlait Trade Waste/Wastewater – Current Context

- 10 Synlait has a comprehensive Development Agreement linked to a Trade Waste discharge permit, which allows the plant to rely on the Council's wastewater system to discharge and convey wastewater (including trade waste) using District Council infrastructure and ultimately being treated at the Pukekohe Wastewater Treatment Plant (Pukekohe WWTP - Watercare).
- 11 The development agreement acknowledges that Synlait will develop the plant in stages and includes a capital work schedule for Council's own infrastructure development.
- 12 Synlait is now seeking to progress to Stage 2 of its Pōkeno site development, namely project S, which is a new product line for Synlait. However, we are facing trade waste capacity conveyance and treatment issues to deliver the full potential of this project.
- 13 This is a significant concern as we are already discharging the maximum wastewater volume under our trade waste permit. I note that Synlait is already reducing the volume of trade waste generated by re-using water within its manufacturing processes. However, the plant must increase wastewater discharge to operate efficiently and realise its full potential. Because of the Pōkeno plant location, we have few alternative methods to dispose of our trade waste other than the Council wastewater treatment system.
- 14 It is challenging for Synlait to work out how the current wastewater infrastructure will provide for the expansion of manufacturing activity in Pōkeno and accommodate MDRS provision as well. None of the evidence provided so far by Council points to a timely resolution of the issue. Synlait Stage 2 development is critical part of our business development plan and was well laid out in our development agreement.
- 15 Mr Martin's evidence (para 52) confirm that the infrastructure expansion plan did not anticipate the scale and speed of MDRS development. The same evidence at para 53 highlights the risk of MDRS on current infrastructure (wastewater overflow).

Synlait Stormwater – Current Context

- 16 Synlait Pōkeno holds a current stormwater discharge consent granted by the Waikato Regional Council. The stormwater generated within our site boundary is pre-treated and conveyed to a retention pond. The pond stormwater quality is monitored before being discharged to a temporary stormwater network currently owned by private interest. We understand the stormwater network will be completed and subsequently vested in Council's at some point.
- 17 Our own stormwater retention pond, while functional, is in an "unfinished state" waiting for the stormwater network downstream of Synlait to be completed and vested into

Waikato District. Once the network is complete, we will convert our current pond to a dry pond in line with our resource consent.

- 18 The Synlait site also provide for the conveyance of naturally occurring water (spring, wetland) taking its source in the upper catchment beyond Synlait boundaries. The water is diverted around our manufacturing site through a mix of open channels (2) and underground pipe (1) located on Synlait's property along Macdonald Road ultimately discharging in the Tanitewhiora Stream.
- 19 Babbage Consultants was commissioned by Synlait to provide an assessment of the stormwater conveyance capacity of Synlait owned network along McDonald Road. The attached memo highlights the need for further assessment to determine the potential impact on Synlait's site of the volume of stormwater generated under a MDRS proposal.
- 20 I note that the "three waters infrastructure and flooding evidence Huls" overlooks the actual and potential flood risk on Industrial sites from the volume of stormwater generated under the proposed MDRS. However, the risk of flooding was identified in the flood risk and network capacity technical review¹. The risk of flooding to the industrial estate from MDRS development should not be discounted.

Infrastructure Provision

- 21 Infrastructure planning is carried out by Council. It relies on using population growth estimates to predict the need for future infrastructure development requirements. In the case of Pōkeno, the contribution of industry to trade waste volume is considerable and the infrastructure to support industry growth is lagging.
- 22 Mr Martin's evidence (para 36-39) confirms that:
 - 22.1 Pokeno is not included in the wastewater model;
 - 22.2 There are wastewater conveyance constraints between Pokeno and Tuakau during large rain events; and
 - 22.3 The Pukekohe WWTP facility has already reached its upgraded capacity of 60,000 people equivalent (PE). I understand the Pukekohe facility has a resource consent to discharge up to 90,000 PE.
- 23 The Council is proposing to rely on the current Trade Waste and Wastewater Bylaw (2023) and Stormwater Bylaw (2021) as the main tool to manage infrastructure needs. It is difficult to reconcile how the bylaws can provide for adequate and timely planning and provision of critical infrastructure in a fast-moving MDRS environment. The bylaws

¹ Page 58, Appendix A – Flood Risk and Network Capacity Maps, Variation 3 Technical Review: Stormwater (Draft) Te Miro Water May 2023

may be appropriate for new connections but does not provide adequately for existing users in our opinion.

24 It is important that the industry needs for Three Waters services must be factored in and provided for during network modelling.

Conclusion

- 25 Synlait relies heavily on Council and Watercare to provide adequate and efficient Three Water Services to support the current operation and provide for future development.
- 26 Synlait has prepared further Planning evidence. Please refer to Locality Planning (Nicola Rykers) evidence for policy and planning in-depth analysis.
- 27 Synlait remains committed to work constructively with Council and stakeholders to support Pōkeno development's ambition.

Jake Deadman

4th July 2023

TO:	Yves Denicourt, Synlait	Date:	3 July 2023
COPY TO:	Daniel Archer, Richard Black	Job No:	66648#C
FROM:	Fiona Keir, William Djongianto	eTrack No:	

SYNLAIT POKENO

STORMWATER FROM UPPER CATCHMENT – HVL SUBDIVISION

Background

Synlait have engaged Babbage to comment on the proposed Plan Change to the upper catchment (HVL site) to the south west of their Pokeno site on McDonald Road. Our comments are based on the assumption that the total catchment area being directed into the channel and stormwater pipes on the Synlait site from the proposed neighbouring HVL site, is no more than the existing catchment area. Total catchment area has been estimated to be 35.48 Ha which includes 28.20 Ha from the HVL site, areas taken from the Babbage resource consent Proposed Catchment Plan S1-C401, see attached. The proposed catchment area entering the Synlait site from the proposed HVL development is not indicated anywhere in the supplied information.

Existing Stormwater Characteristics

The stormwater network directly downstream of the proposed HVL site is located within the Synlait site. It comprises of a combination of underground pipes, open stormwater channels and a road/accessway which conveys both the primary and secondary flow paths. The stormwater channels and pipework are privately owned by Synlait. These drainage infrastructures have been designed to cater for up to the 10% annual exceedance probability (AEP) runoff (underground pipes) and the 1% AEP runoff (pipes, open channel and road corridor, both private and public) generated from within the Synlait site and the existing upstream catchment from the neighbouring HVL site (pre-development coverage pervious).

Indicative TP108 calculations have been undertaken, indicating that the post-development peak flow from the HVL site for both the 10% AEP (pre 1,885 l/s and post 4,575 l/s) and 1% AEP (pre 4,659 l/s and post 8,665 l/s) scenario is close to or more than double that of the pre-development scenario. In the post-development calculation, we have assumed that the proposed HVL site development will have a maximum impervious coverage of 70% impervious. Therefore, it can be assumed that the downstream network would not have the capacity to service the neighbouring post-development peak flow without any engineering intervention (e.g. peak flow attenuation devices). See attached calculations and plan.

Proposed Stormwater Characteristics

The supplied documentation indicates that the HVL proposal is to attenuate the post-development peak flow rate to the pre-development level for the 10% AEP and also to 80% of the pre-development level for the 1% AEP (reduced flow rate for 1% AEP storm event).

While this indicates that the post-development peak flow rate would not exceed that of the predevelopment scenario, the duration of which stormwater is flowing at the pre-development peak flow level would be extended. Considering that the path of secondary flow through the Synlait site consists of an access road and an open channel, further assessments would be required to determine how the depth and duration of surface water would impact operations on site.

JOB NAME: Synlait - HVL D	evelopment			DATE: 29.06	6.2023						
JOB NO: 66648				DES BY: fk			Sabba	lge			
SUBJECT: Predevelopme	ent Upper Cat	chment Flow		CHKD BY: wd/jc	;			U			
TP108 Large Catchment UNDEVELOPED CATCHMENT		Drop down	Data entry cells Result cells menu selection								
Impervious Area	ha	0				Table 3.3 - Curve nun	bers for typical Au	kland conditions			
Pervious Area - No.1 Hydrological Soil Group - No.1 SCS Curve Number (CN)	ha	28.2 Group_B 61				Land use	Group A S (volcanic gra loam)	oil Group nular (alluv	B Soil ial)	Group C Se (mudstone/s dstone)	oil san
Pervious Area - No.2 Hydrological Soil Group - No.2	ha	Group C				Bush, humid-climate, not-grazed	30	55	1	70	
SCS Curve Number (CN) Pervious Area - No.3	ha	74				Pasture, lightly grazed, good grass cover	39	61	9	74	
Hydrological Soil Group - No.3		Group_C				Urban lawns	39	61		74	
total area	ha	74 28.2				Crops, straight rows,	72 er	81		88	
% Impervious		0%			ļ	Sealed roads, roofs	98	98		98	
Catchment Slope (S_c) Catchment Length (I)	m/m km	0.08 0.9			ע ר	Auckland Council - S Fable 4.1: Percentag	Stormwater Code o e Increase in 24-h	of Practice - Clir our Design Rair	nate C nfall De	hange epth	
Channelisation Factor (C)		1			A	AEP 50%	20%	10% 5%	6	2%	1%
Weighted Curve Number		61.00			A	ARI 2 yı	5 yr	10 yr 20	yr	50 yr	100 yr
Initial Abstraction (Ia) weighted	mm	5.00			<u>a</u>	% Increase * 9.0%	<u>6 11.3%</u>	13.2% 15.1	8	16.8%	16.8%
t _c	nours	0.44			*	In 24-Hour Design F	Rainfall Depth Due t	o Future Climate	Chang	je assuming	
storage (S)	mm	162				2.1 C increase in te	mperature				
Apply Climate Change to Pre-de	velopment Sc	enario?	Yes	Select Yes or No							
24-Hour Rainfall Depth (Post)	mm	2 yr ARI 78	110 yr Art	188 -							
24-hour rainfall depths with climate change allowances (P_{24})	mm	85	125	220							

0.392

0.075

4.659

122.1

34445

0.188

0.040

0.968

26.4

7449

Note: Calculation based on homogeneous catchment (impervious and pervious areas discharge to same network or flowpath)

using weighted curve number (CN) and combined 24 hour rainfall depth and volume (refer ARC TP108, Sections 3.2 and 4.2)

m³/s

mm m³

0.261

0.054

1.885

50.7

14289

c*=(P24-2la)/(P24-2la+2S)

24 hour rainfall depth (Q 24)

24 hour runoff volume (V₂₄)

q* (from Fig. 5.1)

Peak Flowrate (q_p)

JOB NAME:	Synlait - HVL Dev	elopment			DATE:	29.06.2023			-		
JOB NO:	66648				DES BY:	fk		Bat	obage		
SUBJECT:	Post Developme	nt Upper C	atchment Flow		CHKD BY:	wd/jc			0		
DEVELOPED	Data entry cells Result cells Drop down menu selection DEVELOPED CATCHMENT										
Impervious A	rea	ha	19.74			Table 3.3 - Cu	rve numbers	for typical Auckla	nd conditions		
Pervious Area Hydrological S SCS Curve Nu	a - No.1 oil Group - No.1 ımber (CN)	ha	8.46 Group_B 61			Land use		Group A Soil (volcanic granula loam)	Group B Soil (alluvial)	Group C So (mudstone/s dstone)	oil an
Pervious Area Hydrological S	a - No.2 oil Group - No.2	ha	Group C			Bush, humid-cl not-grazed	imate,	30	55	70	
SCS Curve NL	imber (CN)	ha	74			Pasture, lightly good grass cove	grazed, er	39	61	74	
Hydrological Soil Group - No 3		Па	Group C			Urban lawns		39	61	74	
SCS Curve Nu	imber (CN)	ha	74			Crops, straight minimal vegeta	rows, tive cover	72	81	88	
% Impervious		Па	70%			Sealed roads, ro	oofs	98	98	98	
Catchment Slo Catchment Le	ope (S _c) ngth (I)	m/m km	0.117 0.9			Auckland Cou Table 4.1: Per	incil - Storn centage Inc	nwater Code of P crease in 24-hour	ractice - Climate C Design Rainfall D	Change epth	
Channelisation	n Factor(C)		0.8			AEP	50%	20%	10% 5%	2%	1%
Weighted Curv	ve Number	120 120	86.90			ARI	2 yr	5 yr 1	0 yr 20 yr	50 yr	100 yr
t	ion (ia) weighted	houre	0.23			* in 24-Hour Γ	9.0% Jesian Rainf	all Denth Due to F	0.2% 10.1%		10.0%
t _c		hours	0.15	2 1°C increase in temperature							
Storage (S)		mm	38								
			2 yr ARI	10 yr ARI	100 yr ARI	WQ Event	34.5mm]			
24-Hour Rainfa	all Depth (P24)	mm	78	110	188			← Refer TP1	08 - App A - Desig	gn Rainfall M	aps
24-hour rainfa	ll depths with e allowances (P ₂₄)	mm	85	125	220	26.0	34.5	← Refer Stor	mwater Code of P	ractice - Table	e 4.1
c*=(P24-2la)/(P24-2la+2S)		0.517	0.613	0.739	0.231	0.291]			
q* (from TP10	8 Fig. 5.1)	-	0.118	0.130	0.140	0.062	0.076	_			
Peak Flowrate	(q _p)	m³/s	2.820	4.575	8.665	0.454	0.742				
24 hour rainfal	I depth (Q ₂₄₎	mm	57.3	93.8	185.5	9.6	15.3	4			
24 hour runoff	volume (V ₂₄)	m°	16149	26457	52315	2696	4308				
		0				1					

11/12/2018 11:52:20 AM X:\dgn\60900's\60936 - Synlait Project Green 2\POKENO\STAGE 1\Civil\Series 400 - Drainage\S1 - C401 Proposed Catchment Plan.dgn

CATCHMENT	AREA (Ha)	DISCHARGE 20% AEP (I/s)	DISCHARGE 10% AEP (I/s)	DISCHARGE 1% AEP (I/s)
А	1.98	130	180	450
B1	1.46	90	130	330
B2	2.88	180	250	640
В3	31.14	1,910	2,670	6,720
С	2.91	190	260	660
D1	1.43	190	240	430
D2	12.64	1,350	1,640	2,980
TOTAL	54.44	4,040	5370	12,210

KEY	
60	E
25.0	Ρ
	С