

VARIATION 3 FLOOD MAPS TUAKAU UPDATED MAPS - FINAL (NOVEMBER 2023)

Contents:

- 2023 Flood Model Build Report
- Flood Depth Map (on aerial photo with model boundary)
- Flood Extent Map (includes zoning and high risk areas)

2023 FLOOD MODEL BUILD REPORT Tuakau

This report provides a comprehensive overview and critical analysis of the Tuakau TUFLOW hydraulic model.

The Tuakau hydraulic model focuses on the catchment within and surrounding Tuakau's urban area with some commercial zones in the outer areas. Tuakau is situated at the base of the Bombay hills with stormwater discharging to the Waikato River via an unnamed tributary. Tuakau is known for its farming lifestyle. The aera contains significant low lying farmland adjacent to the Waikato River banks which regularly flood.

Modelling Goals & Objectives

The main objective of this rapid flood model is to provide the flood extents for maximum probable development (MPD) to identify areas that additional residential development may be adversely affected by increasing the flood risk. This includes adverse effects to upstream and downstream properties in regards to erosion and flood levels.

The modelling work undertaken includes:

- Acquire and integrate the most recent data and assumptions with regards to topographic, hydrological, and meteorological data into the TUFLOW hydraulic model.
- Identify inaccuracies or deficiencies in the asset data (WDC's GIS stormwater asset information) related to critical infrastructure and revise the hydraulic model to improve the accuracy of the flood risk assessment.
- Utilise the TUFLOW hydraulic model to estimate the flood extents in the study town(s) under Maximum Probable Development (MPD) conditions, considering the anticipated effects of climate change based on the RCP 6.0 scenario (2.3 degree temp. increase) year 2081- 2100.
- Simulate and assess the flood extents for the proposed Maximum Probable Development (MPD) scenario, considering the anticipated effects of climate change based on the RCP 6.0 scenario (2.3 degree temp. increase).
- Evaluate the potential impact of future flooding including flood extents, water depths and velocities (high risk flood hazard D x V as per the district plan hazard criteria).
- Provide insights and data regarding flood extents to inform decision-making processes related to land use planning, infrastructure development and flood risk management.

Model Build Assumptions and Methodology

This hydraulic model incorporates various assumptions crucial to understanding its application, scope, and limitations. These assumptions, inherent in all hydraulic models, aim to reduce the complexity of the natural hydrologic and hydraulic processes to a manageable level while ensuring an acceptable degree of accuracy.

The hydrologic and hydraulic model selection and parameters are outlined in Table 1.

PARAMETERS	DETAILS AND ASSUMPTIONS				
MODELLING APPROACH	The flood assessment uses a 1D/2D TUFLOW (Version 2020-01-AE) hydraulic model. Design flood hydrographs (applied as both rain on grid and lumped hydrographs) have been developed using HEC-HMS software for the 1% AEP events including Climate Change to 2100.				
	 In summary, the parameters used in the TUFLOW model include: Waikato District Council (WDC) asset data was used for dimensions, length, inverts, and roughness. Where insufficient information was not available to define asset data (i.e., pipes inverts not available), assumptions of invert levels were made based on standard cover to top of pipes (600mm) and existing ground topography for grading assumptions. 				
	 A Manning's 'n' roughness distribution has been applied to reflect changes in vegetation and land use type within zoned development areas. Roughness values have been determined from the land use coverage from LINZ data in a shapefile format for areas outside of the urban zones. The 2D TUFLOW model uses a 2m x 2m grid with the ground level applied within each grid cell as the average of the LIDAR points within that cell. Sensitivity check runs have utilised a 3m x 3m grid if the model had a long run time or where multiple runs were required. 				
	 No soil infiltration was considered in the hydraulic model, as this is accounted for in the hydrologic modeling. The boundary condition downstream consists of a nominal slope, assumed as a 1% in most water body discharge scenarios and 0.5% for land-based discharge scenarios (modified where considered necessary to represent more closely actual topography). For streams discharging into the Waikato River, the tailwater level has not been included as it is considered, as per the WRC flood modelling, that the river levels will not restrict (or significantly affect) the outlet capacity of the network (further refinement of the modelling in the future may include a more detailed representation of the Waikato and other river levels). 				
MODELLING APPRO					
	rates 'rain on grid' approach using excess precipitation for Maximum Probable Development (MPD).				
MODEL BOUNDARIES/	The model is made up of three distinct result boundaries that are reflected in the model. These are:				
MAPPED RESULTS	1. Rain on grid areas: These are areas that assign rain fall directly onto the ground model. These areas represent flooding within areas of interest (MDRS and urban zones).				
	2. 1D catchments : These catchments are represented by a numerical 1D model (Hec-hms) for model efficiency. As such the mapping of flow/water level depths in these areas are not shown. These areas are outside the areas of interest.				

Table 1 Hydrologic and Hydraulic Model Parameters

	overlan paths/s	d flow from the rain on grid a tream network and do not pi	errain show the 1D lumped catchment inflows as v reas. These areas are restricted to major flow ck up smaller overland flow to the same level as pr areas are outside the areas of interest		
HYDROLOGIC ASSU	MPTIONS				
HYDROLOGICAL LOSSES	different curve r Because of the v Adopted curve r Hydraulic Mode The weighted cu	numbers (CN) based on soil d variety of soils in the area, the numbers have been sourced f lling Runoff Guidelines.	e CN values were determined for each sub-catchm rom S-Map (soil maps) and as per the Waikato areas also incorporated another % of impervious a		
		Zone /Area	% Impervious in MPD		
		Rural	Area taken from building layer and 100% impervious applied		
	_	Existing Residential	70		
		Residential Growth Cells (includes Roads)	80		
		Commercial	90		
		Industrial	90		
		Existing Roads	Area taken from Road layer and 80% impervious applied		
	Initial Abstraction (IA) and storage: IA is the amount of rain that soaks into the ground before a rainfall event turns into runoff. This was modelled as per the Waikato Stormwater Runoff Modelling Guidelines. The following equation is utilised to calculate IA in the model. $I_a = 0.05 \times S$ Storage is calculated as per the Waikato Regional Guidance: $S = \left(\frac{1000}{CN} - 10\right) 25.4 (mm)$				
CATCHMENT DELINE	ATION/ RAINFALL	AREAS			
NET RAINFALL ZONES			t are used for the 2D rainfall areas.		
EXTERNAL AND INTERNAL 1D CATCHMENTS AND ZONES.	Hydrologic sub-catchment delineation is initially developed using the watershed definition algorithm within the GIS environment. This tool defines sub-catchment boundaries based on the digital terrain data (LIDAR) analysis and the identification of flow paths based on topography.				

	The 1D Catchments that drain into the areas of interest of this model are represented by a HEC-HMS model input and shows no overland flow paths or flooding (as these are outside of the area of interest), but contribute (inflows) to areas of interest.						
DESIGN RAINFALL	on the October	2023 and is o	utlined l	ting model which work which work which we have a set of the first set of the first set of the first set of the work with the set of	Waikato Storm	vater Runof	f Modelling
		Tow	'n	Duration / AEP	event 1	.% AEP	
		Tuaka	u :	24h - Duration	1	79mm	
LAND USE / ROUGHNESS	roughness. The handled by usir classifications ir	se coefficients ng different val n QGIS. The re es are consiste	are ass ues in d maining ent with	ts to represent ene umed to be consta ifferent cells. The a areas of the catch the Waikato Storn	nt across each c area was separa ment were assu nwater Manager	ell, and spa ted into lan med to be g nent Guidel	tial variability is d cover grass cover. ine.
	Houses	Grass Ro	bads	Water bodies (Low Vegetation)	Bush (Dense Vegetation)	Cultivat (Mediu Vegetat	
	0.5	0.03	0.015	0.025	0.06		0.04
1D HYDRAULIC MC	DEL ASSUMPTION	NS					
PIPES	 The pipes with missing or '0' diameter in the asset were assumed to have the same diameter as the pipe on the immediate downstream. Pipes with missing inverts were assigned the invert levels from the surrounding manholes or pipes. In case none of the connected manholes and pipes have any invert information, then the inverts were interpolated from the ground network as Invert = Ground level - 0.6m – Diameter of the largest connected pipe						
MANHOLES	 Diameters for manholes with missing diameters were assumed to be 1050mm dia unless connected pipe(s) sizes warranted an increased diameter. Missing manhole inverts were taken from the invert of the lowest connected pipe. 						
CULVERT INPUTS	 Culverts are incorporated in the model where a significant waterway occurs. Culvert information has been extracted from WDC's GIS database. Where information was not available/missing the following assumptions have been applied: The culvert inverts have been determined from the existing channel terrain data. The pipe diameters and number of culverts have been determined from the stream cross-sections and upstream and downstream pipe diameters. In some cases where the culvert is unable to determined, the crossings have been "burnt in" (embedded into the ground model) to reflect a continuation of flow. 						

HYDRAULIC LOSSES	······································
	applied to the manholes.
LIDAR	The DEM provided had a resolution of 1m x 1m that forms the base information for the hydraulic
	model. This data was assumed to be accurate.
	Where it was observed that water levels and vegetation have not been accurately removed within the
	LIDAR ground model or there where observed connectivity issues – modification (Z lines) were added
	to the LIDAR.
GRID SIZE	The 2D TUFLOW model uses a 2m x 2m grid with the ground level applied within each grid cell as the
	average of the LIDAR points.
	The SGS approach samples the bathymetric data at a finer resolution than the 2D grid (0.5m x 0.5m),
	generating depth-varying hydraulic properties for each cell.
BOUNDARIES	Downstream boundaries that discharge from the network are set as a normal slope of 0.5%,
	consistent with the gradient of the land.
RIVERS AND STOP	Rivers were excluded from the modeling. A normal depth boundary condition with a slope of 1%
BANKS	was assumed along the river stop banks. No abnormal ponding or glass wall effect were seen in the
	final results.
SENSITIVITY RUNS	Sensitivity analysis has been undertaken using different scenarios. This is outlined in the below
	Quality Assurance and Sensitivity Checking section.
ASSUMPTION AND	The modelling undertaken aligns, as much as practicable within the project scope, with the Waikato
LIMITATIONS	Stormwater Runoff Modelling Guidelines (June 2018).
CALIBRATION	Calibration has not been undertaken on the model as data is unavailable. Calibration and or
	validation could be undertaken within the stream network if monitoring stations are utilised in the
	future and survey of debris levels are taken post extreme events.

Quality Assurance and Sensitivity Checking

This section addresses the additional checking and quality assurance outlined in the TMW evidence prepared for the MDRS Variation 3 hearing. This also aligns with the discussions at the hearing in regard to model confidence and standard practice for urban scale hydraulic models.

Additional model runs were undertaken to test the model's sensitivity to certain parameters. This was to provide an indication of how each model is affected by certain key parameters. Although these parameters are selected by following guidance there is an envelope of interpretation required. This methodology enables confidence in the flood maps if the results are similar to the base run as this shows the factors are less critical. If the results are significantly different this highlights the parameter maybe more critical in which case the parameter is re-considered in more detail to confirm it is correct.

Modelling QA Summary:

1. Base model:

- 1. Manual removal of small, isolated ponding areas that were considered to represent errors in topography from LIDAR processing or not relevant to the flooding assessment scope (identification of properties with flooding that requires assessment if developed).
- 2. Manual removal of small, isolated ponding areas that were considered unlikely to occur due to potential LIDAR processing areas from vegetation.
- 3. Checking of connectivity between large flooding area split by roads or embankments.
- 4. Cutting in of channels to represent connection under bridges or channels not considered to be accurately represented by LIDAR.
- 5. Checking and inclusion of pipes and culverts in areas considered likely to contain pipes and culverts based on knowledge of areas and surrounding topography.

2. Blockage Scenarios

- Base Blockage Scenario (as included in finalised flood maps): Critical pipes only included in model: If pipes are included in model (refer pipes modelled maps) then these are considered to be at 100% capacity (0% blocked). Initially all pipes below 300mm were excluded, however during the QA stage some pipes 300mm dia and smaller were included if they had potential to impact ponding areas.
- 2. Blockage Scenario 1: 100% blockage on all pipes within model (Bridges and Z channels = 0% blockage).
- 3. Blockage scenario for critical pipes (all pipes included in model) are outlined in the table below:

Pipe size(s)	<300mm	300-600mm	600-900mm	>900mm	Bridges/open channels (Z Cuts)
% blockage	100%	75%	50%	25%	0%

3. Runoff factors:

Current CN Values as included in finalised flood maps

Soil Type	Cover type / Soil Description	CN values					
		Forest	Grass	Dirt	Cropland	Impervious	
A	Moderately Well Draining & Well Draining	30	39	72	67	98	
В	Imperfectly Well Draining	55	61	82	78	98	
С	Poorly Drained	70	74	87	85	98	
D	Very Poorly Drained	77	80	89	89	98	
Impervious	-	98	98	98	98	98	

Sensitivity check CN Values: 25% added to existing (Existing CN * 1.25 + rounded to nearest whole number to a max of 98). Increased values are underlined.

Soil Type Cover type / Soil		CN values					
	Description	Forest	Grass	Dirt	Cropland	Impervious	
A	Moderately Well Draining & Well Draining	<u>38</u>	<u>49</u>	<u>90</u>	<u>84</u>	98	
В	Imperfectly Well Draining	<u>69</u>	<u>76</u>	<u>98</u>	<u>98</u>	98	
С	Poorly Drained	<u>88</u>	<u>93</u>	<u>98</u>	<u>98</u>	98	
D	Very Poorly Drained	<u>96</u>	<u>98</u>	<u>98</u>	<u>98</u>	98	
Impervious		98	98	98	98	98	

4. Hydrology:

- 1. Existing = 24 hour rainfall event + 6 RCP climate change scenario (as included in finalised flood maps) for years 2081-2100.
- 2. Check = 24 hour event + 8.5 RCP climate change scenario for years 2081-2100.

5. Comparison to existing models

- 1. WRC flood model This comparison showed that the WRC flood maps/modelling does not intersect the urban area and therefore no useful comparison was able to be undertaken.
- 2. Previous WSP rapid flood hazard modelling. This mapping was based on previous LIDAR which is less accurate than the 2022 LIDAR. This also excluded all pipes. This quick method for flood area identification showed good correlation in the gully areas.

6. Sensitivity results comparison:

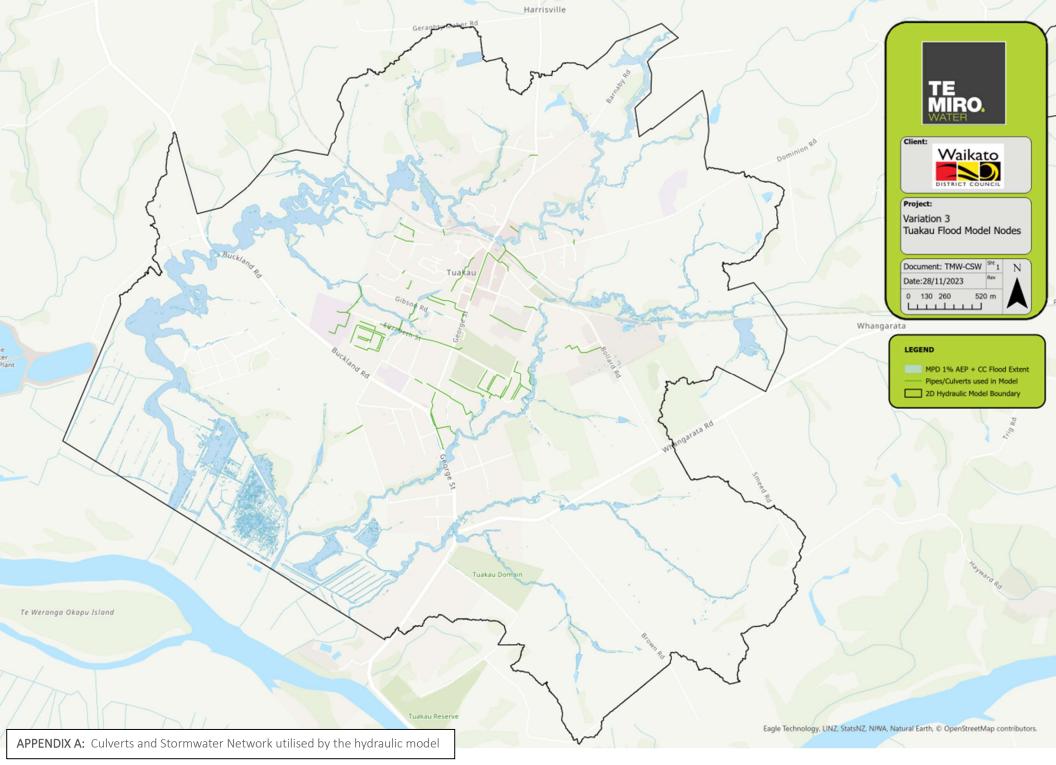
The following compares the results from each sensitivity run to the base model. Each run utilises a 3m x 3m grid and hasn't been cleaned (removal of small isolated ponding areas). Refer to summary table below for results.

Figure 1: Base map (Flood depths)

Figure 2: Blockage Scenario 1 – Shows increased flooding by the 100% blockage scenario. This shows an increase in flood levels but not significantly increasing the flood footprint. This blockage scenario is unlikely to occur as large culverts are less likely to completely block. As expected there is no difference in areas that are not constrained by culverts. Result: Not considered a critical factor.

Figure 3: Blockage Scenario 2 – Shows a slight increase in flooding from the base model and a reduction in flood level from the 100% blockage scenario as would be expected. Result: Not considered a critical factor in the flood model as very similar to base model.

Figure 4: CN Increased Scenario: Shows slight increase from base model (small isolated flooding areas not cleaned). Result: Not a critical factor in the flood model as very similar to base model.

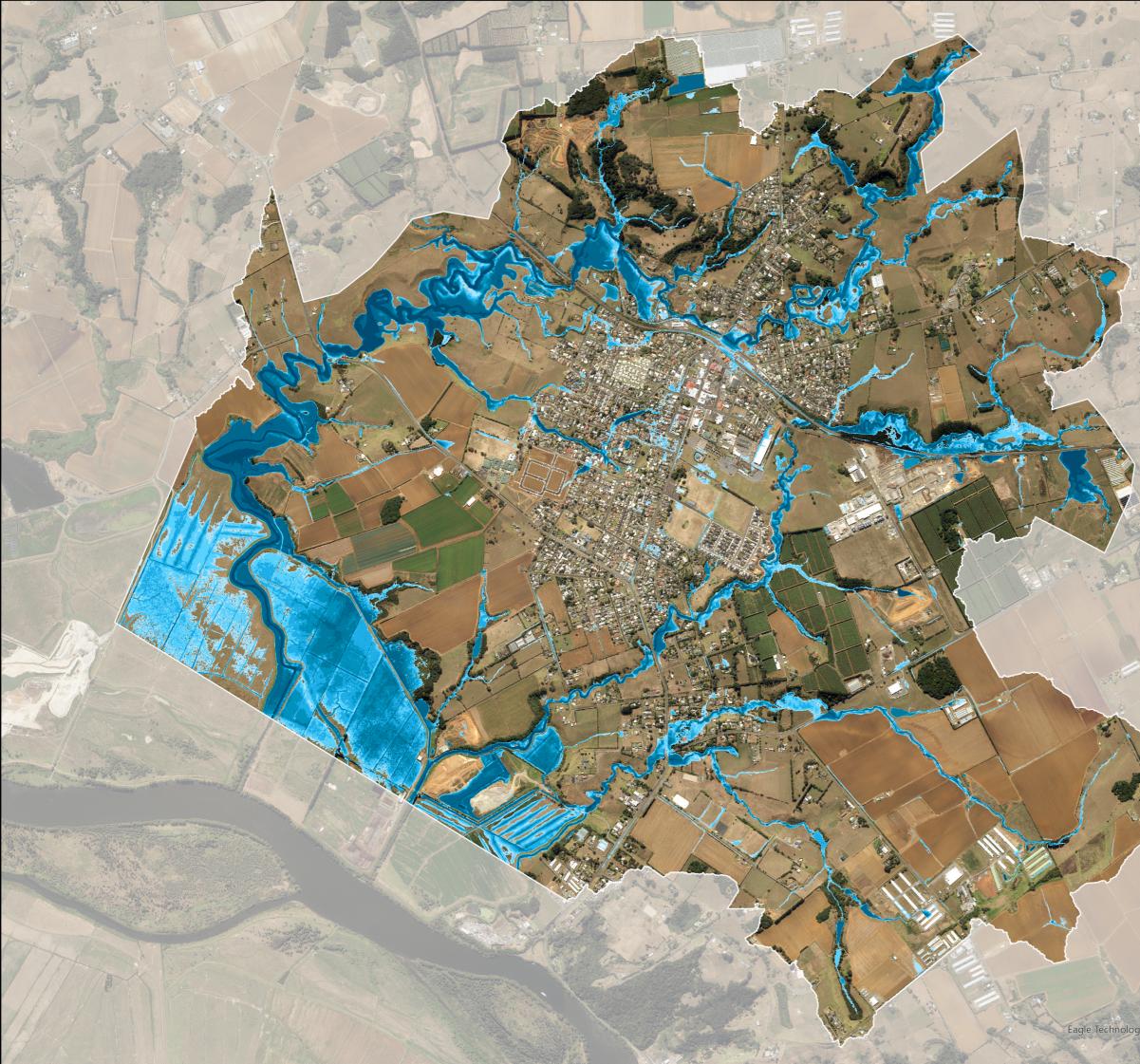

Figure 5: Increased Climate Change Scenario (RCP8.5): Shows slight increase from base model (small isolated flooding areas not cleaned). Very similar to the CN increase scenario. Result: Not a critical factor in the flood model as very similar to base model.

Scenario	Critical	Comment
Blockage 1	Yes in areas directly affected by	Blockage of large culverts is unlikely so not
	culverts.	considered a critical issue requiring further testing.
	No in areas not affected by culverts (as	Consideration of catchment characteristics in terms
	expected).	of blockage risk could be considered in the future if
		further refinements are undertaken.
Blockage 2	No	Slight increase only – no additional properties inside
		flood extent
CN factor increase	No	Slight increase only – no additional properties inside
		flood extent
Climate change	No	Slight increase only – no additional properties inside
increase		flood extent

Sensitivity Checking Results summary:

No additional sensitivity checking or changes to the base model parameters are required due to the results above showing that the parameters tested are not critical enough to warrant further testing or adjustments. Any adjustments within the guidance parameters are unlikely to show substantial changes in the flood extent.

Author(s):	Reviewer(s):
Saeed Ashouri and Andrew Boldero	Britta Jensen
24/11/2023	24/11/2023



VARIATION 3 FLOOD MAPS TUAKAU UPDATED MAPS - FINAL (NOVEMBER 2023)

Te Miro Water Consultants, 3 Empire Place, Cambridge, 3434. Waikato

Page 13

Client:

Ν

Project: Variation 3 Tuakau Flood Model

 Document: TMW-CSW
 ^{Sht} 1

 Date:28/11/2023
 Rev

 0
 130
 260
 520 m

LEGEND

 MPD Flood Model 1% AEP + CC

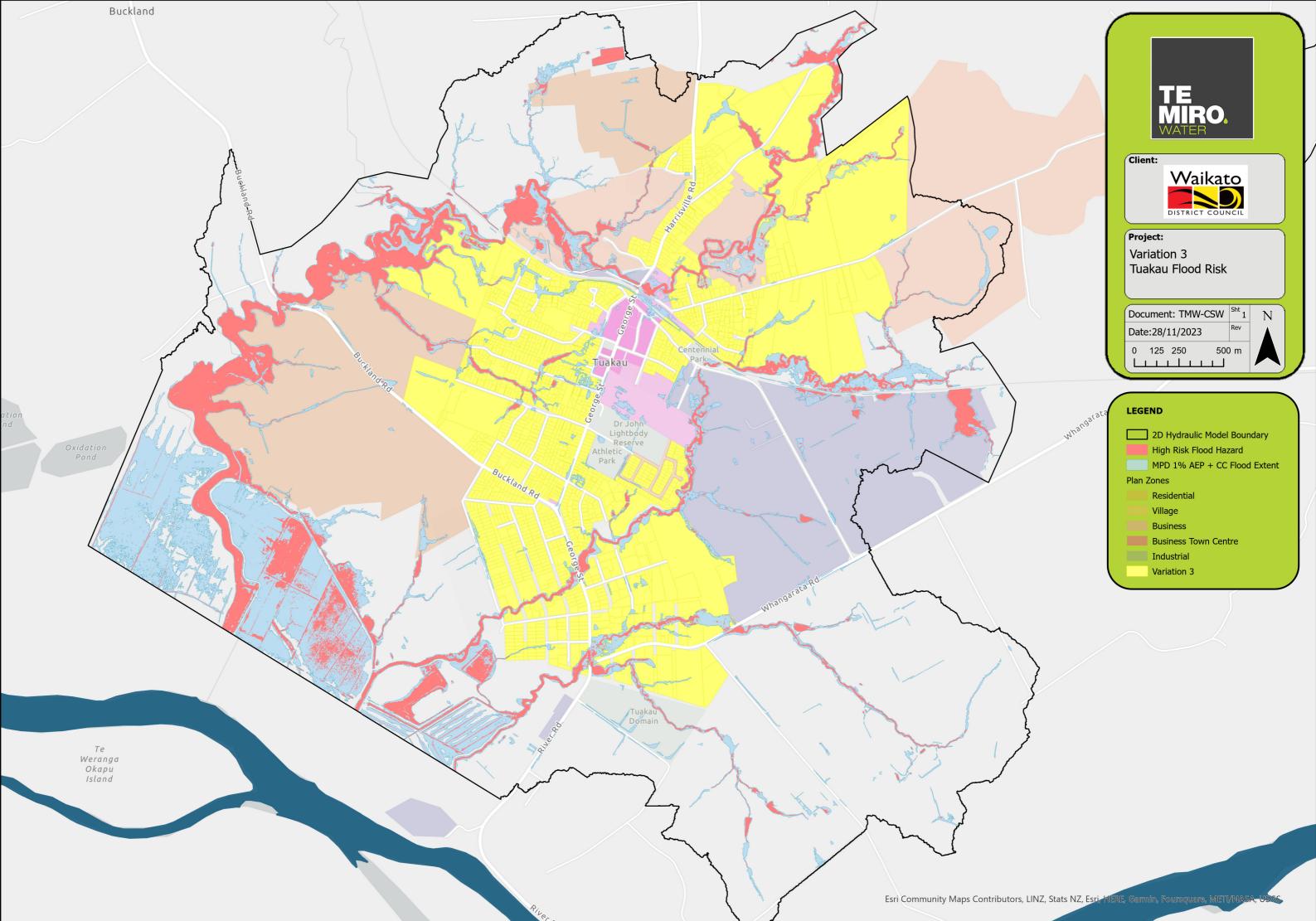
 Maximum Depth (m)

 <0.1</td>

 0.10-0.20

 0.20-0.40

 0.40-0.60


 0.60-0.80

 0.80-1.0

 1.0-2.0

 >2.0

 2D Hydraulic Model Boundary

